рефераты скачать

МЕНЮ


История изучения капиллярных и поверхностных сил

История изучения капиллярных и поверхностных сил

Введение.


Если стеклянная трубка, столь же узкая внутри, как волос (лат. capillus), погру­жа­ется в воду, то жидкость поднимается внутри трубки до высоты боль­шей, чем снаружи. Эффект не мал: высота поднятия около 3 см в трубке с кана­лом в 1 мм. Это кажущееся нарушение законов гидростатики (открытке кото­рых было достижением науки XVII в.) вызвало на пороге XVIII в. возрастаю­щий ин­терес к капиллярным яв­лениям. Интерес был двояким. Во-первых, хоте­лось ви­деть, можно ли охарактеризо­вать поверхности жидкостей и твердых тел некото­рым простым механическим свой­ством, таким, как со­стояние натяжения, кото­рое могло бы объяснить наблюдаемые явления. Следовало объяснить, на­при­мер, почему вода в трубке поднимается, тогда как ртуть опускается; почему поднятие воды между параллельными пластинами вдвое меньше, чем в трубке с диаметром, равным расстоянию между пластинами; почему поднятие обратно пропор­ционально этому диаметру. Вторая причина инте­реса происходила из понимания того, что наблюдались эффекты, которые должны возникать в ре­зультате действия сил ме­жду частицами вещества, и что изучение этих эффек­тов, следовательно, должно дать какие-то сведения о таких силах и, возможно, о самих частицах.

До появления теорий Юнга и Лапласа.


Первооткрывателем капиллярных явлений считается Леонардо да Винчи (Leonardo da Vinci). Однако первые аккуратные наблюдения капиллярных яв­лений на трубках и стеклянных пластинках были проделаны Фрэнсисом Хокс­би в 1709 году [1]).

То, что вещество не является бесконечно делимым и имеет атомную или моле­ку­лярную структуру, было рабочей гипотезой для большинства ученых на­чиная с XVIII в. К концу XIX в., когда группа физиков, сторонников позити­ви­стской фило­софии, ука­зала, каким непрямым являлось доказательство суще­ст­вования атомов, на их заявление последовала лишь незначительная реакция, и в итоге их возражения не были опроверг­нуты до начала этого столетия. Если в ретроспективе к сомнения ка­жутся нам неосно­вательными, мы должны пом­нить, что почти все, кто тогда верил в существование ато­мов, верили также твердо в материальное существование электро­магнитного эфира, а в первой по­ловине XIX в. — часто и теплорода. Тем не менее ученые, внесшие наиболь­ший вклад в теорию газов и жидкостей, использовали предположение (обычно в яв­ной форме) о дискретной структуре вещества. Элемен­тарные частицы мате­рии называли атомами, или молекулами (например, Лаплас), или просто части­цами (Юнг), но мы бу­дем следовать современным понятиям и упот­реблять слово «молекула» для элементар­ных частиц, составляющих газ, жид­кость или твердое тело.

В начале XIX в. силы, которые могли бы существовать между молекулами, были так же не ясны, как и сами частицы. Единственной силой, в отношении кото­рой не было сомнения, была ньютоновская гравитация. Она действует ме­жду небес­ными те­лами и, очевидно, между одним таким телом (Землей) и дру­гим (например, яблоком), имеющим лабораторную массу; Кавендиш незадолго до этого показал, что она дейст­вует и между двумя лабораторными массами, а потому предполагалось, что она дейст­вует также между молекулами. В ранних работах по жидкостям можно найти массы молекул и плотности масс, входя­щие в уравнения, в которых мы теперь должны писать числа молекул и плотно­сти чисел молекул. В чистой жидкости все молекулы имеют одинаковую массу, так что это различие не играет роли. Но еще до 1800 г. было ясно, что понятия о гравитационных силах недостаточно для объясне­ния капиллярных явле­ний и других свойств жидкостей. Поднятие жидкости в стек­лянной трубке не зависит от толщины стекла (по данным Хоксби[1][D&L1] , 1709 г.), и, таким образом, только си­лы со стороны молекул в поверхностном слое стекла действуют на молекулы в жидкости. Гравитационные же силы лишь обратно пропорциональны квадрату расстояния и, как было известно, действуют свободно через промежуточ­ное ве­щество.

Природа межмолекулярных сил, отличных от сил тяготения, была весьма неяс­ной, но в измышлениях не было недостатка. Священник-иезуит Роджер Боскович (Ruggero Giuseppe Boscovich) полагал, что молекулы отталкиваются на очень малых расстояниях, притягиваются при несколько больших расстоя­ниях и затем по мере увеличения рас­стояния демонстрируют попеременно от­талкива­ние и притяжение со все уменьшаю­щейся величиной. Его идеи в сле­дующем столетии оказали влияние как на Фарадея, так и на Кельвина, но были слишком сложными, чтобы оказаться непосредственно полез­ными для тех, кто занимался теорией капиллярности. По­след­ние благоразумно доволь­ствовались простыми гипотезами.

Куинк (G.H. Quincke) поставил эксперименты по определению наибольше­го рас­стояния, на котором действие межмолекулярных сил ощутимо. Он полу­чил, что для различных веществ эти расстояния составляют ~ 1/20000 часть миллиметра, т.е. ~ 5·10–6 см (данные приведены согласно [2]).

Джеймс Джурин показал, что высота, на которую поднима­ется жидкость, опре­де­ляется верхней частью трубки, которая находится над жидкостью, и не зависит от формы нижней части трубки. Он считал, что подня­тие жидкости происходит благо­даря притяжению со стороны внутренней ци­линдрической по­верх­ности трубки, к которой примыкает верхняя поверхность жидкости. Исходя из этого, он показал, что поднятие жидкости в трубках из одинакового вещества обратно про­порционально их внутрен­нему радиусу [3].

Клеро был одним из первых, кто показал необхо­ди­мость принятия во вни­мание притяжения между частицами самой жидкости для объяснения капилляр­ных явлений [4]. Он, однако, не признавал, что рас­стояния, на которых дейст­вуют эти силы, не­ощу­тимо малы.

В 1751 г. фон Сегнер ввел важную идею по­верхно­стного натяжения по анало­гии с механическим натяжением мембраны в теории уп­ругости [5]. Сего­дня понятие поверх­ностного натяжения является зау­рядным, с него обычно на­чинают изучение капилляр­ных сил и поверхностных явлений в учебных заведе­ниях.

Эта идея стала ключевой в дальнейшем развитии теории. Собственно, тем са­мым был сделан первый шаг в изучении явления — введено феноменологиче­ское понятие, описывающее макроскопическое поведение системы. Второй шаг — это вывод феноме­нологических понятий и вычисление значений величин, ис­ходя из мо­лекулярной тео­рии. Этот шаг имеет огромную важность, так как яв­ляется проверкой правильности той или иной молекулярной теории.

В 1802 г. Джон Лесли привел первое корректное объяснение подъ­ема жидкости в трубке, рассматривая притяжение между твердым телом и тонким слоем жидкости на его поверхности [6]. Он, в отличие от большинства преды­дущих исследователей, не предполагал, что сила этого притяжения на­правлена вверх (непосредственно для под­держания жидкости). Напротив, он показал, что притяже­ние всюду нормально к по­верхности твердого тела.

Прямой эффект притяжения — увеличение давления в слое жидкости, на­ходя­щемся в контакте с твердым телом, так, что давление становится выше, чем внутри жидкости. Результатом этого является то, что слой стремится “растечься” по по­верх­ности твердого тела, останавливаемый лишь силами гра­витации. Таким обра­зом, стек­лянная трубка, погруженная в воду, смачивается водой всюду, куда та “смогла до­ползти”. Поднимаясь, жидкость образует столб, вес которого в конце концов уравно­вешивает силу, порождающую рас­текание жидкости.

Эта теория не была записана с помощью математических символов и по­этому не могла показать количественную связь между притяжением отдельных частиц и конеч­ным результатом. Теория Лесли была позднее переработана с применением ла­пласов­ских математических методов Джеймсом Ивори (James Ivory) в статье о capil­lary action, under “Fluids, Elevation of”, в приложении к 4-му изданию Encyclo­paedia Britannica, опубликованном в 1819 г.


Теории Юнга и Лапласа.


В 1804 г. Томас Юнг [7] обосновал теорию капиллярных явле­ний на прин­ципе поверхностного натяжения. Он также наблюдал постоян­ство угла смачива­ния жид­ко­стью поверхности твердого тела (краевого угла) и нашел количе­ст­венное соотно­шение, связывающее краевой угол с коэффициен­тами поверхност­ного натяжения со­ответст­вующих межфазных границ. В рав­новесии контактная ли­ния не должна дви­гаться по поверхности твердого тела, а значит, говорил


                                                (1)

где sSV, sSL, sLV — коэффициенты поверхностного натяжения межфазных гра­ниц твер­дое тело – газ (пар), твердое тело – жидкость, жидкость – газ соот­ветст­венно, q — краевой угол. Это соотношение теперь известно как формула Юнга. Эта работа все же не оказала такого влияния на развитие науки в этом направ­лении, какое ока­зала вы­шедшая несколькими месяцами позже статья Лапласа (Pierre Simon Laplace). Это, по-видимому, связано с тем, что Юнг избе­гал ис­пользования математических обозначений, а пытался описывать все сло­весно, отчего его работа кажется запутан­ной и неясной. Тем не менее он счита­ется се­годня одним из основателей количест­венной теории ка­пиллярности.

Явления когезии и адгезии , конденсация пара в жидкость, смачивание твердых тел жидкостями и многие другие простые свойства вещества — все ука­зывало на на­ли­чие сил притяжения, во много раз более сильных, чем гравита­ция, но действую­щих только на очень малых расстояниях между молекулами. Как говорил Лаплас, единст­венное вытекающее из наблюдаемых явлений усло­вие, налагаемое на эти силы, состоит в том, что они «неощутимы на ощутимых расстояниях».

Силы отталкивания создавали больше хлопот. Их наличие нельзя было от­ри­цать — они должны уравновешивать силы притяжения и препятствовать пол­ному разруше­нию вещества, но их природа была совершенно неясной. Во­прос осложнялся двумя следующими ошибочными мнениями. Во-первых, часто счи­талось, что дейст­вующей силой отталкивания является тепло (как правило, мне­ние сторонников тео­рии тепло­рода), поскольку (такова была аргументация) жидкость при нагревании сначала расши­ряется и затем кипит, так что молеку­лы разъединяются на гораздо большие расстояния, чем в твердом теле. Второе ошибочное мнение возникло из уводящего назад к Ньютону представления, со­гласно которому наблюдаемое давле­ние газа происходит вследствие статиче­ского отталкивания между молекулами, а не из-за их столкновений со стенками сосуда, как тщетно доказывал Даниель Бернулли.

На этом фоне было естественно, что первые попытки объяснить капил­ляр­ность или вообще сцепление жидкостей основывались на статических аспек­тах вещества. Ме­ханика была хорошо понимаемой теоретической ветвью науки; термодинамика и кине­тическая теория были еще в будущем. В механиче­ском рассмотрении ключевым было предположение о больших, но короткодей­ст­вующих силах притяжения. По­коящиеся жидкости (в капиллярной ли трубке или вне ее) находятся, очевидно, в равновесии, а потому эти силы притяжения должны уравновешиваться силами от­талкивания. По­скольку о них можно было сказать еще меньше, чем о силах притя­жения, их часто об­ходили молчанием, и, говоря словами Рэлея, «силам притяжения предоставлялось ис­полнять немыс­лимый трюк уравновешивания самих себя». Лап­лас[2] первым удовлетво­ри­тельно разрешил эту проблему [8], полагая, что силы оттал­кивания (тепловые, как он допускал) можно заменить внутренним давлением, кото­рое действует повсеме­стно в несжимаемой жидкости. (Это предположение приводит време­нами к не­определенности в работах XIX в. в отношении того, что строго пони­мается под «давлением в жидко­сти».) Приведем расчет внутреннего давления по Ла­п­ласу. (Этот вывод ближе к выво­дам Максвелла [2] и Рэлея [10]. Вывод при­водится по [9] .)

Оно должно уравновешивать силы сцепления в жидкости, и Лаплас отож­деств­лял это с силой на единицу площади, которая оказывает сопротивление разделению беско­нечного жидкого тела на два далеко разъединяемых полубес­конечных тела, ог­раничен­ных плоскими поверхностями. Приведенный ниже вывод ближе к выводам Максвелла и Рэлея, чем к оригинальной форме Лапласа, но существенного различия в аргумента­ции нет.

Рассмотрим два полубесконечных тела жидкости со строго плоскими по­верх­но­стями, разделенные прослойкой (толщины l) пара с пренебрежимо малой плотно­стью (рис. 1), и в каждом из них выделим элемент объема. Первый нахо­дится в верх­нем теле на высоте r над плоской поверхностью нижнего тела; его объем равен dxdydz. Второй находится в нижнем теле и имеет объем , где начало полярных коорди­нат совпа­дает с положением пер­вого элементарного объема. Пусть f(s) — сила, дейст­вующая между двумя мо­лекулами, разделенными расстоянием s, а d - радиус ее дейст­вия. Поскольку это всегда сила притяжения, имеем


Если r — плотность числа молекул в обоих телах, то вертикальная состав­ляю­щая силы взаимодействия двух элементов объема равна

                                      (2)

Полная сила притяжения, приходящаяся на единицу площади (положительная вели­чина), есть

                       (3)

Пусть u(s) — потенциал межмолекулярной силы:

                           (4)

                       (5)

 

 

 

Рис. 1.


Интегрируя по частям еще раз, получаем

                                                 (6)

Внутреннее давление Лапласа K есть сила притяжения на единицу площади ме­ж­ду двумя плоскими поверхностями при их контакте, т.е. F(0):

                                                  (7)

где — элемент объема, который можно записать как . Поскольку u(r) по предположению всюду отрицательно или равно нулю, то K положи­тельно. Лаплас по­лагал, что K велико по сравнению с атмосферным давлением, но пер­вую реали­сти­че­скую численную оценку предстояло сделать Юнгу.

Приведенный  выше вывод основан на неявном допущении, что молекулы рас­пре­делены равномерно с плотностью r, т.е. жидкость не обладает различи­мой струк­турой в шкале размеров, соизмеримых с радиусом действия сил d. Без этого предпо­ложения нельзя было бы написать выражения (2) и (3) в такой про­стой форме, а надо было бы выяснить, как присутствие молекулы в первом эле­менте объема влияет на вероятность наличия молекулы во втором.

Натяжение на единицу длины вдоль произвольной линии на поверхности жид­ко­сти должно быть равным (в соответствующей системе единиц) работе, за­трачен­ной на создание единицы площади свободной поверхности. Это следует из опыта по рас­тяже­нию пленки жидкости (рис. 2).


Рис. 2.

 

На проволочной рамке держится жидкая пленка, прикрепленная правым краем к свобод­но пе­ре­мещаемой проволочке. Сила F, необходимая для уравновешивания натяжения в двусто­ронней пленке, пропорциональна длине L. Пусть F = 2sL. Смещение проволочки на расстоя­ние x требует работы Fsdx = sdA, где dA — увеличение площади. Таким образом, натяже­ние на единицу длины на отдель­ной поверхности, или поверхностное натяжение s, численно равно поверхност­ной энергии на единицу площади.


Величина этой работы может быть сразу получена из выражения (6) для F(l). Если взять два полубесконечных тела в контакте и развести их на расстоя­ние, пре­вышающее радиус действия межмолекулярных сил, работа на единицу площади бу­дет определяться как

                                              (8)

При разделении образуются две свободные поверхности, и потому затраченную ра­боту можно приравнять удвоенной поверхностной энергии на единицу пло­щади, ко­торая равна поверхностному натяжению:


                                                   (9)

Таким образом, K есть интеграл от межмолекулярного потенциала, или его ну­левой момент, а H — его первый момент. В то время как K недоступно прямому экспери­менту, H может быть найдено, если мы сможем измерить поверхностное натяжение.

Пусть — плотность когезионной энергии в некоторой точке жидкости или газа, т.е. отношение dU/dV где dU — внутренняя энергия малого объема V жидко­сти или газа, содержащего эту точку. Для молекулярной модели прини­маем

                                                        (10)

где r — расстояние от рассматриваемой точки. Рэлей отождествлял лапласов­ское K с разностью этого потенциала 2 между точкой на плоской поверхности жидкости (значение  2S) и точкой внутри (значение  2I). На поверхности ин­тегрирование в (10) ограничено полусферой радиуса d, а во внутренней области проводится по всей сфере. Следовательно, S есть половина I, или

                                (11)

Рассмотрим теперь каплю радиуса R. Расчет fI не изменяется, но при по­луче­нии fS интегрирование теперь проводится по более ограниченному объему из-за кри­визны поверхности. Если — угол между вектором  и фиксирован­ным радиусом , то

               (12)

Тогда внутреннее давление в капле есть


                                         (13)

где H определяется уравнением (9). Если бы мы взяли не сферическую каплю, а пор­цию жидкости с поверхностью, определяемой двумя главными радиусами кривизны R1 и R2 , то получили бы внутренне давление в виде

                                                       (14)

По теореме Эйлера сумма  равна сумме обратных радиусов кривизны по­верх­ности вдоль любых двух ортогональных касательных.

Так как K и H положительны и R положительно для выпуклой поверхно­сти, то из (13) следует, что внутреннее давление в капле выше, чем в жидкости с плоской поверх­ностью. Наоборот, внутреннее давление в жидкости, ограни­чен­ной вогнутой сфериче­ской поверхностью ниже, чем в жидкости с плоской по­верхностью, по­скольку R в этом случае отрицательно.

Эти результаты составляют основу теории капиллярности Лапласа. Урав­нение для разности давлений  (давление жидкости внутри сферической ка­пли радиуса R) и  (давление газа снаружи) теперь называют уравнением Лапласа:

                                                         (15)

Достаточно трех идей — натяжения у поверхности, внутреннего давления и крае­вого угла, а также выражений (1) и (15), чтобы решить все задачи обыч­ной рав­новесной капиллярности методами классической статики. Таким обра­зом, после ра­бот Лапласа и Юнга основы количественной теории капиллярно­сти были заложены.

Результаты Юнга были получены позже Гауссом вариационным мето­дом. Но все эти работы (Юнга, Лапласа и Гаусса) обладали одним общим недостат­ком, изъя­ном, если можно так выразиться. Об этом недостатке будет рассказано позже.

При расчете давления внутри искривленной жидкой поверхности был вве­ден по­тенциал Рэлея 2 (10); попутно было отмечено, что I является плотно­стью коге­зион­ной энергии. Впервые это полезное понятие в 1869 г. ввел Дюпре, который определил его как работу дробления куска вещества на со­ставляющие его молекулы (la travail de dйsagrйgation totale — работа полной дез­аг­регации).


 

Рис. 3

 

Направленная внутрь сила, действующая на молекулу на глубине r < d, противоположна по знаку направленной наружу силе, которая бы возникла со стороны молекул в заштрихован­ном объ­еме, если бы он был заполнен равномерно с плотностью .


Он приводит [12] вывод, проделанный его коллегой Ф. Ж. Д. Массье сле­дую­щим образом. Сила, действующая на молекулу у поверхности по направле­нию к объ­ему жидкости, противоположна по знаку силе, возникающей от за­штрихованного объема на рис. 3, поскольку внутри жидкости сила притяжения от шарового объема радиуса равна нулю из симметрии. Таким образом, сила, направленная внутрь, есть


               (16)

Эта сила положительна, так как f(0 < s < d) < 0 и F(d) = 0 из-за нечетности функ­ции f(s). Никакая сила не действует на молекулу, если только она не нахо­дится в преде­лах расстояния d по ту или иную сторону от поверхности. Следо­вательно, ра­бота удале­ния одной молекулы из жидкости равна


              (17)

поскольку u(r) — четная функция. Эта работа равна минус удвоенной энергии на мо­лекулу, необходимой для дезинтеграции жидкости (удвоенной, чтобы не считать мо­ле­кулы дважды: один раз при их удалении, другой раз — как часть среды):

                                                          (18)

Это простое и понятное выражение для внутренней энергии U жидкости, со­дер­жа­щей N молекул. Отсюда следует, что плотность когезионной энергии дается выра­жением (10), или

                                                          (19)

что совпадает с (11), если убрать индекс I. Сам Дюпре получил тот же результат околь­ным путем. Он рассчитывал dU/dV через работу против межмолекуляр­ных сил при од­нородном расширении куба жидкости. Это дало ему

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.