рефераты скачать

МЕНЮ


Исследование работ Фарадея по электричеству

Тогда остаётся единственная возможность: предположить, что электроны ускоряются во вторичной обмотке электрическим полем, и это поле порождается переменным магнитным полем непосредственно в пустом пространстве. Тем самым утверждается новое фундаментальное свойство магнитного поля: изменяясь во времени, оно продолжает вокруг себя электрическое поле.

Теперь явление электромагнитной индукции предстаёт перед нами в совершенно новом свете. Главное - это процесс в пустом пространстве: рождение магнитным полем электрического. Есть ли проводящий контур (катушка) или нет, это не меняет существа дела. Проводник с его запасом свободных электронов - просто индикатор (регистратор) возникающего электрического поля: оно приводит в движение электроны в проводнике и тем самым обнаруживает себя.

Сущность явления электромагнитной индукции совсем не в появлении индукционного тока, а в возникновении электрического поля.

В 1860 году Максвелл покинул Абердин, получив кафедру в Кингс- колледже в ЛондоЭском университете. Здесь впервые Максвелл встретился с Фарадеем. Именно в лондонский период учёный развивает свою теорию поля. Ей посвящается ряд работ: "О физических линиях силы" (1861-1862), "Динамическая теория поля" (1864-1865). Вот в этой последней работе и дана система знаменитых уравнений.

Теория Максвелла, по словам Герца, - это уравнения Максвелла. Суть этой теории сводилась к тому, что изменяющееся магнитное поле создаёт не только в окружающих телах, но и в вакууме вихревое электрическое поле, а оно, в свою очередь, вызывает появление магнитного поля. "Теория, которую я предлагаю, - пишет Максвелл, - может быть названа теорией электромагнитного поля, потому что она имеет дело с пространством, окружающим электрические или динамические тела, и она может быть названа также динамической теорией, поскольку она допускает, что в этом пространстве имеется материя, находящаяся в движении, посредством которой и производится наблюдаемые электромагнитные явления".

Теория электромагнитного поля Максвелла знаменовала собой начала нового этапа в физике. Именно на этом этапе развития физики поле стало реальностью, материальным носителем взаимодействия. Мир постепенно стал представляться электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля. Большинство физиков исключительно высоко оценили теорию Максвелла. Пуанкаре считал её "Вершиной математической мысли". "Самым увлекательным предметом во время моего обучения была теория Максвелла. Переход от сил дальнодействия к полям, как основным величинам, делал эту теорию революционной", - писал А. Эйнштейн.

Анализируя свои уравнения, Максвелл пришёл к выводу, что должны существовать электромагнитные волны, причём скорость их распространения должна равняться скорости света. Отсюда был сделан совершенно новый вывод: свет есть разновидность электромагнитных волн.

Так, по словам Луи де Бройля, Максвелл "сделал всю оптику частной главой электромагнетизма". На основе своей теории Максвелл предсказал существование давления, оказываемого электромагнитной волной (а значит, и светом), и вычислил его. Оно оказалось равным плотности энергии электромагнитного поля. Предсказание Максвелла позднее было блестяще доказано Петром Николаевичем Лебедевым в 1899 году.

В 1867 году умирает Фарадей. Глубоко переживает Максвелл смерть своего кумира. Он убеждён, что лучшим памятником Фарадею будет наибыстрейшее окончание " Трактата об электричестве и магнетизме". Восемь лет отдал Максвелл "Трактату". Это вершина его научного творчества, это настоящая энциклопедия электромагнетизма.

"Трактат" вышел в свет в 1873 году, когда Максвелл уже работал в Кембридже, куда он переехал в 1871 году, чтобы возглавить кафедру экспериментальной физики.

Максвелл, отстаивая выдвинутую Фарадеем идею близкодействия, доказал, что электрические и магнитные поля взаимосвязаны и могут существовать независимо от создавшего их источника, распространяясь в пространстве в виде электромагнитных волн. В этом и заключается сущность теории Максвелла, ядром которой являются уравнения Максвелла.

Четыре строчки уравнений, поразивших современников соей математической совершенностью и красотой, впервые появились в 1873 году в книге Максвелла "Трактат об электричестве и магнетизме", в которой объединены в единое целое оптика, электричество и магнетизм.

Фарадей был приверженцем идеи силовых линий, которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Силовые линии заполняют все окружающее пространство (поле, по терминологии Фарадея) и обусловливают электрические и магнитные взаимодействия.

Следуя Фарадею, Максвелл разработал гидродинамическую модель силовых линий и выразил известные тогда соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе Фарадеевы силовые линии (Faraday's Lines of Force, 1857). В 1860–1865 Максвелл создал теорию электромагнитного поля, которую сформулировал в виде системы уравнений (уравнения Максвелла), описывающих основные закономерности электромагнитных явлений:

1-е уравнение выражало электромагнитную индукцию Фарадея;

2-е – магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения;

3-е – закон сохранения количества электричества;

4-е – вихревой характер магнитного поля.

Эти уравнения имеют вид:


1)

2)

3)

4)


В современной интерпретации:

Уравнение 1 выражает закон Гаусса. Для статистических полей этот закон эквивалентен закону Кулона. Утверждается, что поток электрического поля через замкнутую поверхность пропорционален полному заряду, сосредоточенному в объёме, ограниченной данной поверхностью.

Уравнение 2 представляет собой закон Гаусса для магнитного поля. Он утверждает, что поток магнитного поля через замкнутую поверхность равен нулю. Это означает, что не существует магнитных аналогов электрического заряда.

Уравнение 3 выражает закон электромагнитной индукции Фарадея. Он утверждает, что интеграл от электрического поля вдоль замкнутого контура пропорционален скорости изменения потока магнитного поля через поверхность, натянутую на этот контур. Таким образом, изменяющееся магнитное поле сопровождается переменным электрическим полем.

Наконец, уравнение 4 представляет собой модифицированный закон Ампера. Максвелл изменил это уравнение, добавив в него второе слагаемое в правой части, названное током смещения, которое описывает изменение потока электрического поля. Модифицированный закон Ампера утверждает, что интеграл от магнитного поля по замкнутому контуру пропорционален сумме двух слагаемых. Первое из них содержит полный ток, протекающий сквозь поверхность, натянутую на этот замкнутый контур. Второе слагаемое (введенное Максвеллом) содержит скорость изменения потока электрического поля через эту поверхность. Благодаря внесённому Максвеллом дополнению к закону Ампера четвертое уравнение Максвелла есть утверждение, что переменное электрическое поле сопровождается переменным магнитным полем.

Продолжая развивать эти идеи, Максвелл пришел к выводу, что любые изменения электрического и магнитного полей должны вызывать изменения в силовых линиях, пронизывающих окружающее пространство, т.е. должны существовать импульсы (или волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит от диэлектрической и магнитной проницаемости среды и равна отношению электромагнитной единицы к электростатической. По данным Максвелла и других исследователей, это отношение составляет 3*1010 см/с, что близко к скорости света, измеренной семью годами ранее французским физиком А.Физо.

В октябре 1861 Максвелл сообщил Фарадею о своем открытии: свет - это электромагнитное возмущение, распространяющееся в непроводящей среде, т.е. разновидность электромагнитных волн. Этот завершающий этап исследований изложен в работе Максвелла "Динамическая теория электромагнитного поля" (Treatise on Electricity and Magnetism, 1864), а итог его работ по электродинамике подвел знаменитый "Трактат об электричестве и магнетизме" (1873).

Максвелл развивал свои уравнения и следствия из них на основе созданной Фарадеем модели электрических и магнитных полей. Мысленные модели описываемые его уравнениями, были сложнее, чем те, которые используют теперь. Максвелл и другие ученые того времени считали поля и волновые движения физическими свойствами реальной всепроникающей среды, которую они называли эфиром. И, тем не менее, в 1862 году Максвелл предложил, что "свет состоит из поперечных волнообразных движений той же самой среды, которая служит причиной электрических и магнитных явлений".

К тому времени на основе своих уравнений он рассчитал скорость электромагнитных волн и нашел, что эта скорость была приблизительно такой же, как и незадолго до этого скорость света.

Более точную наглядную иллюстрацию уравнений Максвелла предложил английский физик Брэгг в виде воображаемой модели, известной под названием "цепочка Брэгга". "Представьте себе цепочку, сделанную из чередующихся железных и медных колец . Замыкая на мгновение ключ К, мы посылаем ток от батареи в первое медное кольцо. Следующее, сделанное из железа кольцо намагничивается. Возникновение магнитного поля в нем вызывает индукционный ток в третьем кольце. Этот ток вызывает магнитное поле и т. д."

Генрих Герц писал о теории Максвелла: "Нельзя изучать эту удивительную теорию, не испытывая по времени такого чувства, будто математические формулы живут собственной жизнью, обладают собственным разумом — кажется, что эти формулы умнее нас, умнее даже самого автора, как будто они дают нам больше, чем в свое время в них заложено".

"Трактат по электричеству и магнетизму"', в котором Джеймс Кларк Максвелл подвёл итоги двухвековому развитию учения об электрических и магнитных явлениях, был издан в 1873 году. Современники называли его "библией электричества"'. Книга содержала более 1000 страниц, из которых лишь десяток относился непосредственно к знаменитым уравнениям. Сами уравнения были разбросаны по разным частям, и было их довольно много - 12.

По характеру изложения ''Трактат'' был слишком сложным. Знаменитый голландский физик Г. А. Лоренц, которому было суждено впоследствии развить и продолжить электромагнитную теорию, познакомившись в молодости с уравнениями Максвелла, не смог понять их физического смысла.

2.5 Современный взгляд на электродинамику Фарадея-Максвелла


Среди физиков электромагнитная теория Фарадея – Максвелла не сразу завоевала признание. Отдельные выдающиеся исследователи, подобно Гельмгольцу и Больцману, признавали ее значение и выступали в ее защиту, но даже такой проницательный мыслитель-физик, как Густав Кирхгоф, до конца своей жизни – он умер в 1887 году – твердо придерживался старых представлений об электрической жидкости и в своих лекциях затрагивал теорию Максвелла лишь мимоходом.

Анри Пуанкаре (1854-1912г.) одним из первых разобрался в многосложном изложении Максвелла. Его правильная и стройная интерпретация идей английского ученого помогла рассеять невразумительную путаницу у комментаторов этой теории. В своих лекциях Пуанкаре проводит глубокий анализ различных попыток теоретического обобщения экспериментально установленных законов электричества и магнетизма. Он подробно разбирает электродинамику Ампера и постепенно подводит слушателей к выводу о преимуществах уравнений Максвелла, наиболее полно охватывающих электромагнитные процессы и предсказывающие неизвестные ещё физике явления.

Выводы теории получают экспериментальное подтверждение в 1887 г., когда Генрих Герц (1857-1894) экспериментально получил электромагнитные волны. С 1887 г. Герц начинает ставить свои опыты. Прежде всего, он находит способ генерирования самых высокочастотных в то время колебаний, используя открытый колебательный контур (вибратор Герца). Обладая малой емкостью и индуктивностью, вибратор действительно позволял получать колебания высокой частоты, возникающие при проскакивании искр в разрядном промежутке диполя. Рядом с этим генератором находился незамкнутый виток. Герц обнаружил, что в момент разряда в генераторе происходит проскакивание искры между незамкнутыми концами витка, расположенного генератора. Это были первые в мире передатчик и приемник.


Рис. 17. Первый радиатор Герца. Герц использовал два метровых провода, связанных с индукционной катушкой


Далее Герц заметил, что влияние генератора на приемник особенно сильно в случае резонанса (частота колебаний генератора совпадает с собственной частотой) Продолжая исследования, Герц при удалении резонатора от вибратора обнаружил, что в большом помещении с увеличением расстояния размер искр не убывает монотонно, а периодически меняется. Он объяснил это тем, что происходит интерференция прямой волны. Этот опыт наиболее убедительно доказывал, что электромагнитные волны, предсказанные Максвеллом, действительно существуют. Герц ставит опыты с целью проверки тождества световых и электромагнитных волн.

Почти сразу он обнаруживает ''тень''- непрозрачность металлических листов для ''электрических лучей'', но не наблюдает огибания. Значит, диэлектрики ''прозрачны'' для волн. Но они должны вызывать преломление. И Герц обнаруживает явление преломления волн в асфальтовой призме весом более чем в тонну, причем отклонение соответствует тому, которое должно быть по Максвеллу. Последующие опыты показали существование отражения волн, а затем и и поляризацию. Герц ставит между генераторм и приемником решетку из параллельных проволок, от ориентации которой меняется интенсивность искры в приемнике. Зная период колебаний вибратора и измерив длину волны, Герц вычислил скорость распространения электромагнитных волн; она оказывается равной скорости света.

Все это было изложено в работе "О лучах электрической силы", вышедшей в декабре 1888 года. Этот год считается годом открытия электромагнитных волн и экспериментального подтверждения теории Максвелла. В 1889 г., выступая на съезде немецких естествоиспытателей, Герц говорил: ''Все эти опыты очень просты в принципе, тем не менее, они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно. Они означают блестящую победу теории Максвелла. Насколько маловероятным казалось ранее её воззрение на сущность света, настолько трудно теперь не разделить это воззрение''. Если Максвелл преобразовал представления Фарадея в математические образы, то Герц превратил эти образы в видимые и слышимые электромагнитные волны. Но даже после опытов Герца учение английского физика не получило широкого распространения.

Главная причина его невосприятия - необычность предложенных идей. В общепринятом понимании тогда понимании теория Максвелла только описывала электромагнитные явления на строгом математическом языке, но не давала их объяснения. Объяснить - значило, по мнению физиков того времени, построить механическую модель явления. Механика представлялась незыблемым фундаментом всех разделов физики. Поэтому большинство учёных считало, что для завершения электромагнитной теории необходимо ещё открыть механическую интерпретацию уравнений Максвелла. В плену этого предвзятого представления находились все физики. Не избежал этого и Максвелл. В первых своих работах по электромагнетизму он основное внШмание отводил именно механическим моделям. Подчёркивая непривлекательность одного из предложенных объяснений, Пуанкаре писал: ''Можно подумать, что читаешь описание завода с целой системой зубчатых колёс, рычагами, передающими движение и сгибающимися от усилия, центробежными регуляторами и передаточными ремням''. Однако позднее Максвелл меняет свою точку зрения, он выражает желание ''просто направить внимание читателя на механические явления, которые помогут ему в понимании электрических явлений. Все подобные фразы в настоящей статье должны пониматься как иллюстративные, а не объяснительные''.

Нарушение соответствия между механикой и электродинамикой стало причиной глубокого кризиса физики. Кризис физической теории, вызванный проблемой объяснения установленных на опыте свойств света, усугубился неожиданно последовавшими как из рога изобилия величайшими открытиями совершенно новых и удивительных явлений.

Начиная с 1895 года, когда Рентген открыл проникающие лучи, буквально каждый следующий год приносил ошеломляющиее открытие:

·                   1896 год - открытие явления радиоактивности,

·                   1897 год - открытие электрона,

·                   1898 год - открытие радия и полония,

·                   1899 год - открытие сложного свойства радиоактивного излучения.

Пуанкаре пристально следил за крутой ломкой, происходящей в физике конца XIX века. В это время голландский физик Г. А. Лоренц считает, что теория Максвелла нуждается в дополнении, так как в ней не учитывается структура вещества. В ней свойства тел характеризуются различными коэффициентами: диэлектрической и магнитной проницаемостью, проводимостью. ''Мы не можем удовлетвориться простым введением для каждого вещества этих коэффициентов, значения которых должны определяться из опыта; мы будем принуждены обратиться к какой-нибудь гипотезе относительно механизма, лежащего в основе этих явлений. Эта необходимость привела к представлению об электронах, т. е. крайне малых электрически заряженных частицах, которые в громадном количестве присутствуют во всех весомых телах'', - писал Лоренц.

Все эти вставшие перед физикой проблемы настоятельно требовали выработки новых физических понятий и представлений и создания на их основе теоретического обобщения всей совокупности недавно полученных экспериментальных данных.

В 1895 г. в работе ''Опыт теории электрических и оптических явлений в движущихся телах'' Лоренц даёт систематическое изложение электронной теории, опирающейся, с одной стороны, на теорию Максвелла, а с другой - на представление об атомарности электричества.

В начале 90-х годов XIX в. Г. Лоренц на основе своей электронной теории и гипотезы о неподвижном эфире выводит уравнения электромагнитного поля для движущихся сред. И делает очень важный вывод: никакие оптические и электромагнитные опыты, проведенные в равномерно и прямолинейно движущейся системе отсчёта, не в состоянии обнаружить этого движения.

Таким образом, Лоренц сформулировал принцип относительности для электромагнитных процессов. В 1904 г., называя принцип относительности в числе основных принципов физики.

Развивая электродинамику и стремясь объяснить опыты, Лоренц и Пуанкаре опирались на концепцию эфира. Подойдя к принципу относительности, они не смогли поставить вопрос о постоянстве и, особенно о предельном значении скорости света. Это и было сделано А. Эйнштейном (1879-1955).

Основополагающая работа Эйнштейна по теории относительности называлась ''К электродинамике движущихся сред''. Она поступила в редакцию журнала ''Анналы физики'' 30 июня 1905 г. Работа состояла из двух частей. В первой из них были изложены основы новой теории пространства и времени, во второй - применение этой теории к электродинамике движущихся сред. В основу своей теории Эйнштейн кладёт два постулата:

1. Принцип относительности - в любых инерциальных системах все физические процессы - механические, оптические, электрические и другие - протекают одинаково.

2. Принцип постоянства скорости света - скорость света в вакууме не зависит от движения источника и приемника, она одинакова во всех направлениях, во всех инерциальных системах и равна 3 108 м/с.

На статью Эйнштейна обратил внимание редактор журнала ''Анналы физики'', профессор Макс Планк. Работа Эйнштейна вызвала у него интерес возможностью провести ''такое грандиозное упрощение всех проблем электродинамики движущихся тел, что вопрос о допустимости принципа относительности должен ставиться в первую очередь в любой теоретической работе, посвященной этой области''. Вместе с тем, не найдя в работе Эйнштейна того обобщения уравнений механики, которое требовалось новым принципам относительности, он сам приступил к решению этой задачи. Свои результаты Планк доложил 23 марта 1906 г. на заседании Немецкого общества. Отметив, что ''принцип относительности, предложенный недавно Лоренцом и в более общей формулировке Эйнштейном'', требует пересмотров законов механики, он привёл вывод новых уравнений движения. Эта работа завершала создание релятивистской механики.

В 1907 г. Эйнштейн закладывает первые основы общей теории относительности. Из общей теории относительности был получен ряд важных выводов:

1. Свойства пространства - времени зависят от движущейся материи.

2. Луч света, обладающий инертной, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения.

3. Частота света в результате действия поля тяготения должна изменяться.

Общая теория относительности - ОТО - дала качественный скачок в развитии электродинамики, предложив уравнения Максвелла в гравитационных полях.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.