рефераты скачать

МЕНЮ


Исследование методов наблюдения доменов в тонких ферромагнитных пленках

2) Можно исследовать зависимость точки Кюри от направления намагниченности в кристалле, т.е. установить, по всем ли направлениям в кристалле при одной и той же температуре исчезают ферромагнитные свойства.

Оказывается, что и точка Кюри ферромагнетика для всех направлений в кристалле совершенно одинакова. Ферромагнитные свойства теряются в ферромагнетике по всем направлениям при одной и той же температуре. Изотропность точки Кюри объясняется изотропностью спонтанной намагниченности.

Если снимать кривые намагничивания по различным направлениям в ферромагнитных кристаллах (например, для железа), то скажется следующее. Намагниченность монокристалла железа в направлении ребра –куба резко возрастает уже в слабых полях и быстро достигает насыщения (рисунок 21).












вдоль ребра куба (направление [100])

вдоль диагонали грани (направление [110])

вдоль пространственной диагонали (направление [111]).

Рисунок 21 - Кривые намагничивания монокристалла железа по различным кристаллографическим направлениям


При намагничивании вдоль диагонали грани кривая намагничивания сначала резко идет вверх, как и при намагничивании в направлении ребра куба, затем при достижении приблизительно 0,7 от величины насыщения рост намагниченности замедляется и на кривой намагничивания появляется излом. При дальнейшем возрастании поля намагниченность увеличивается. Насыщение намагниченности наблюдается в довольно сильных полях, причем ее величина равна насыщению, полученному при намагничивании вдоль ребра куба (см. рисунок 21, кривая 2). На том же рисунке видно, что при намагничивании вдоль пространственной диагонали быстрый рост намагниченности прекращается, когда она достигает примерно 0,58 от насыщения. Кривая намагничивания в этом месте претерпевает излом, затем следует медленное возрастание намагниченности с ростом поля, пока не будет достигнуто насыщение (кривая 3, рисунок 21).

Таким образом, намагничивание монокристалла железа по различным направлениям происходит по-разному, т.е. в ферромагнитных кристаллах существует магнитная анизотропия.

Магнитную анизотропию удобнее всего характеризовать работой намагничивания. В самом деле, при намагничивании ферромагнетика расходуется некоторое количество энергии, численно определяемое площадью, ограниченной осью намагниченности, кривой намагничивания и продолжением прямой, соответствующей насыщению, до пересечения с осью намагниченности (рисунок 22).









Рисунок 22. Заштрихованная площадь численно равна работе намагничивания.


Из рисунка 21 следует, что работа намагничивания вдоль направления ребра куба для железа наименьшая, вдоль пространственной диагонали – наибольшая, а при намагничивании вдоль диагонали грани она имеет некоторое среднее значение.

Поэтому направление вдоль ребра куба в железе называют направлением легкого намагничивания, а направление, совпадающее с направлением пространственной диагонали, направлением трудного намагничивания.

Исследования, проведенные на монокристаллах никеля, дают прямо противоположную картину. Здесь наибольшая работа при намагничивании затрачивается вдоль ребра куба, которое является направлением трудного намагничивания (рисунок 23, кривая 1). Направлением легкого намагничивания является направление пространственной диагонали  (рисунок 23, кривая 3). На рисунке 2 кривая 2 соответствует намагничиванию монокристалла никеля по диагонали грани.











1-вдоль ребра куба;

2-вдоль диагонали грани;

3-вдоль пространственной диагонали.

Рисунок 23 - Кривые намагничевания монокристалла никеля вдоль различных кристаллографических направлений


Монокристалл кобальта имеет всего одну ось легкого намагничивания, совпадающую с направлением гексагональной оси (рисунок 24). На рисунке 25 изображены кривые намагничивания монокристалла кобальта в направлении гексагональной оси (1) и перпендикулярно к ней (2). Таким образом, в железе имеются три оси (6 направлений по оси и против нее) легкого намагничивания и 4 оси (8 направлений) трудного намагничивания; в никеле – 4 оси (8 направлений) легкого намагничивания, 3 оси (6 направлений) трудного намагничивания; в кобальте – 1 ось (2 направления) легкого намагничивания и бесконечное число направлений трудного намагничивания, перпендикулярных гексагональной оси.



.






Рисунок 24. Направление лёгкого намагничивания в монокристалле кобальта совпадает с гексагональной осью.



Рисунок 25 - Кривые намагничивания монокристалла кобальта: 1– вдоль гексагональной оси; 2 – перпендикулярно гексагональной оси (в базисной плоскости).


Согласно закону сохранения энергии, работа, затраченная на намагничивание ферромагнетика, не может исчезнуть, она превращается в потенциальную энергию намагниченного тела.

Всякое тело, предоставленное самому себе, стремится занять положение, соответствующее минимуму его потенциальной энергии. В соответствии с этим принципом железный стержень в магнитном поле своей осью установится вдоль поля, так как намагничивание вдоль оси стержня требует меньшей энергии, чем намагничивание поперек стержня.

Вырежем шар из монокристалла железа или никеля и поместим его в магнитное поле, предоставив ему возможность любым образом ориентироваться в пространстве. Последнее можно осуществить, например, при помощи подвеса Кардана (рисунок 26).









Рисунок 26 - Шар в подвесе Кардана.


Так как работа намагничивания по различным направлениям в кристалле различна, то шар будет вести себя в магнитном поле, как магнитная стрелка, устанавливаясь вдоль поля одной из своих осей легкого намагничивания. На рисунке 27 изображен шар из монокристалла никеля, на котором точками отмечены выходы осей легкого намагничивания. Таких осей четыре.








Рисунок 27 - Шар из монокристалла никеля. Точками отмечены выходы на поверхность осей лёгкого намагничивания.


Представим себе теперь, что мы ориентировали шар из монокристалла железа в направлении грани куба по отношению к полю. Кристалл намагнитится, и так как намагничивание происходит в направление оси легкого намагничивания, работа намагничивания будет минимальной.

Если теперь поворачивать этот кристалл в магнитном поле, то намагничивание уже не будет совпадать с направлением легкого намагничивания в кристалле, и работа намагничивания будет возрастать. Представим себе, что кристалл ориентирован так, что вектор напряженности магнитного поля лежит в кристаллической решетке в плоскости грани куба. Тогда с изменением угла поворота кристалла относительно поля работа намагничивания будет периодически то возрастать, то уменьшаться.

Пусть работа намагничивания в направлении ребра куба равна U0. Изобразим эту величину в виде отрезка, который численно равен U0. При повороте кристалла на некоторый угол a величина энергии изменится. Пусть она будет равна Ua. Отложим под углом a к отрезку, изображающему U0, отрезок, равный Ua. Если определить значения Ua для различных углов и откладывать под этими углами отрезки, равные значениям энергии, затрачиваемой при намагничивании шара под соответствующим углом, то получим график энергии намагничивания по различным направлениям в плоскости грани куба, или, как говорят, энергетическую диаграмму в этой плоскости (рисунок 28). Как уже отмечалось, различные значения работы намагничивания по различным направлениям в кристалле и характеризуют собой магнитную анизотропию. Численно магнитная анизотропия равна учетверенной разности работ намагничивания в направлении ребра куба и в направлении диагонали грани (рисунок 28).





Рисунок 28 - Энергетическая диаграмма в плоскости грани куба монокристалла железа.


Эта величина, отнесенная к единице объема, представляет собой важную характеристику ферромагнетика и называется константой магнитной анизотропии.








Рисунок 29 - Энергетическая диаграмма монокристалла железа для диагональной плоскости.


На рисунке 29 представлена энергетическая диаграмма в диагональной плоскости кубической решетки. Как видно из рисунка, «горб» соответствует направлению трудного намагничивания, а наиболее глубокие лунки соответствуют направлениям легкого намагничивания.

Изучение энергетической анизотропии кристаллов позволило Н.С. Акулову рассчитать кривые намагничивания монокристаллов по различным направлениям. Рассчитанные кривые оказались в хорошем согласии с опытом.

Для кристаллов кубической системы, энергия, связанная с анизотропией:


U = U0 + K (s12s22 + s22s32 + s12s32 ) (25)


где U0 – энергия в направлении ребра куба кристалла, которое обозначают [100] (рисунок 30);

s1, s2, s3 – косинусы углов между направлениями X, Y, Z и вектором спонтанной намагниченности Js (рисунок 31). При комнатной температуре константа магнитной анизотропии К для железа равна +4,28·105 эрг/см3, а для никеля – 5,12·104 эрг/см3.










Рисунок 30 - Главные кристаллографические направления в кубическом кристалле.











Рисунок 31. S=cos ; S=cos ; S=cos ;


Константа магнитной анизотропии меняется с изменением температуры. На рисунке 32 представлены графики зависимости констант магнитной анизотропии железа и никеля от температуры. Обращает на себя внимание резкая зависимость от температуры константы анизотропии никеля. Даже в области комнатных температур ее величина изменяется в полтора раза.


Рисунок 32 - Температурная зависимость констант магнитной анизотропии 1- для железа; 2- для никеля;


Энергия анизотропии для гексагональных кристаллов типа кобальта выражается формулой:


U = U0 + K1 sin2a + K2 sin4a (26)


где К1 и К2 – первая и вторая константы анизотропии;

a - угол между гексагональной осью и направлением вектора спонтанной намагниченности (рисунок 33).[7, с. 65-74]










Рисунок 33.


1.11 История обнаружения доменов


У обычных ферромагнитных образцов вследствие их конечных размеров энергетически более выгодным оказывается разделение кристалла на ряд антипараллельно намагниченных областей – доменов. Чем на большее количество таких доменов разобьется образец, тем меньше будет его магнитная энергия. Таким образом, в целом ферромагнетик оказывается разделенным на множество доменов, намагниченных до насыщения так, что результирующая намагниченность образца в отсутствие внешнего поля равна нулю.

Впервые предположение о существовании магнитных доменов для объяснения быстрого намагничивания ферромагнетиков в сравнительно слабых магнитных полях высказал в 1892 году русский учетный Б.Л. Розинг, а затем в 1907 году – французский ученый П. Вейсс [2, с. 99]. В 1907 году Вейсс ввел понятие спонтанной намагниченности и дал теоретическое объяснение того факта, что, несмотря на наличие у ферромагнетиков спонтанной намагниченности, сильно намагнитить их удается не всегда. Он предположил, что ферромагнетик развит на множество магнитных доменов, причем направление спонтанной намагниченности меняется от домена к домену [9, с.154].

Реальность существования областей спонтанной намагниченности доменов была подтверждена двумя фактами. Первый заключается в скачкообразном изменении намагниченности ферромагнетика при плавном увеличении внешнего магнитного поля. Было установлено, что изменение магнитного момента при одном скачке связано с перемагничением внешним полем некоторого числа доменов с одинаковым направлением намагниченности, т.е. определенного объема ферромагнетика. Обычно на кривой намагничения эти скачки незаметны, что объясняется малой величиной скачка и большим их количеством. Скачки становятся заметными при увеличении обычного масштаба кривой намагничения приблизительно в 109 раз. Этот эффект впервые был обнаружен в 1919 году Баркгаузеном и назван его именем.

Вторым фактором, доказавшим реальность доменов, было получение на отполированной поверхности ферромагнетика характерных узоров – фигур Акулова-Биттера [2, с. 99]. Попытки увидеть магнитные домены непосредственно в микроскоп были впервые предприняты в 1932 году Биттером и независимо от него Хамосом и Тиссеном.

В этих экспериментах исследователи наносили на ферромагнитный кристалл суспензию, содержавшую мелкие ферромагнитные взвешенные частицы, а затем старались рассмотреть в металлографический микроскоп образуемое ими изображение магнитных доменов. В результате была получена великолепная картина магнитных доменов, хотя Биттер и не решился делать выводы об их форме, а в заглавии статьи говорилось просто о неоднородностях в ферромагнетиках. Возможно, так произошло потому, что, принимая общепризнанное в то время мнение о размерах доменов, сформировавшееся после обнаружения эффекта Баркгаузена, Биттер был убежден, что магнитные домены не могут быть столь большими, какими они были на фотографиях. Вскоре было выполнено множество наблюдений доменов, но в то время не принимали в расчет магнитостатическую энергию и потому не заботились о том, чтобы кристаллы были вырезаны строго параллельно плоскостям, в которых лежит намагниченность, поэтому изображения не были четкими.

Тогда же крупный вклад в развитие метода суспензии и метода электрополировки внес изучавший домены Элмор. Созданная им техника была использована затем в работах группы Уильямса, что и принесло успех этим исследователям. В то же время магнитологов ввела в заблуждение обнаруженная лабиринтная структура (рисунок 34, а). Речь идет об изображениях мельчайших магнитных доменов с размерами 0,01 мм. и ниже.







Рисунок 34 - Магнитные домены, наблюдавшиеся методом порошковых фигур на монокристалле железа в плоскости (001): а – лабиринтная доменная структура поверхностного слоя; б – магнитные домены, появившиеся после удаления электрополировкой деформированного поверхностного слоя глубиной 28 мкм.

Если вычислить объем этих доменов, получится значение, примерно совпадающее с величиной 10-8 см3, найденной из эффекта Баркгаузена. В результате ошибочной интерпретации полученного результата сложилось мнение, что домены малы. Однако Кая в работе 1934 г. доказал, что появление лабиринтной структуры обусловлено поверхностной деформацией, возникающей при шлифовке кристаллической поверхности; выяснилось также, что эти изображения не отражают действительной формы магнитных доменов, и проблема, связанная с размерами магнитных доменов, по-прежнему осталась неразрешенной.

В 1935 г. Ландау и Лифшиц дали чисто теоретическое объяснение доменной структуры и правильно предсказали форму доменов, что позволило навести порядок в хаосе экспериментальных результатов. Затем в 1944 г. Неель выполнил расчеты мелкой доменной структуры, причем впервые учел при этом магнитостатическую энергию. Полученная геометрическая структура доменов весьма заметно расходилась с тогдашними представлениями о ней, но в конце концов в 1949 г. теоретические результаты были полностью подтверждены в замечательных экспериментах с порошковыми фигурами, выполненных Уильямсом, Бозортом и Шокли (лаборатория фирмы «Белл»). На рисунок 34 б, показано изображение доменов, полученное по методу этих авторов после удаления поверхностного деформированного слоя. Как можно убедиться, размеры доменов в данном случае существенно больше, чем в лабиринтной структуре.

Данный метод наблюдения доменов аналогичен способу получения изображения силовых линий магнита, расположенного под листом бумаги, с помощью насыпаемых сверху железных опилок. Он состоит в том, что на отшлифованную поверхность ферромагнетика наносят сверху мельчайшие магнитные частицы и наблюдают в микроскоп доменную структуру. Называется этот способ методом порошковых фигур [9, с.156-157].


1.12 Возникновение доменов


Кристаллы ферромагнетиков состоят из магнитных доменов. Каждый домен – это область, намагниченная до насыщения однородно, т.е. векторы спонтанной намагниченности Js, построеные в различных точках домена, параллельны.

Форма доменов, их размер, взаимное расположение доменов и доменных границ (стенок) – все это входит в понятие «доменная структура» магнетика.

С тех пор, как впервые наблюдались магнитные домены, исследования доменных структур путем непосредственного наблюдения доменов шли с нарастающей интенсивностью. Обнаружилось огромное разнообразие доменных структур в кристаллах различных веществ. Более того, оказалось, что для одного и того же вещества, но в образцах разного размера и формы, доменная структура может быть совершенно различной. Своеобразные домены наблюдаются в поликристаллических и аморфных тонких слоях, лентах и пленках с наведенной магнитной анизотропией.

Домены различаются не только по виду, но и по своим свойствам. Например, есть доменные структуры, исключительно чутко откликающиеся на внешние воздействия, особенно на магнитные поля. И наоборот, есть структуры, изменить которые очень трудно. Таким образом можно говорить о целом мире магнитных доменов.

При последовательном изменении напряженности магнитного поля Н от +Нs – значения поля насыщения одного направления до –Нs – поля противоположного направления домены «рождаются», растут, развиваются, начинают взаимодействовать друг с другом, изменяют свою форму и размеры. Потом те домены, в которых намагниченность Js ориентирована удачно относительно поля (например, JsН) постепенно поглощают соседние домены (с Js¯Н).

Векторы спонтанной намагниченности в кристалле ориентируются не как угодно, а строго вдоль определенных кристаллографических осей. Их называют осями легкого намагничивания(ОЛН) , так как в этих направлениях кристалл намагничивается легче (в меньших полях), чем в любых других. В этом проявляется естественная магнитокристаллическая анизотропия.

Количество осей легкого намагничивания в разных магнетиках различно. Например, железо (Fe) имеет кубическую кристаллическую решетку, и осями легкого намагничивания служат ребра куба. Их обозначают [100], [010] и [001], так что у Fe три естественных оси легкого намагничивания. Никель (Ni) также имеет кубическую решетку, но осями легкого намагничивания являются пространственные диагонали куба, их четыре. Кобальт (Со) имеет гексагональную кристаллическую решетку и единственную ОЛН – гексагональную ось. Кристаллы различных веществ по характеру магнитной анизотропии могут быть подобны Fe или Ni и их называют магнитомногоосными, а те, которые подобны Со, - магнитоодноосными.

Наряду с естественной магнитной анизотропией в кристалле можно искусственно создать так называемую наведенную магнитную анизотропию. Например, в монокристаллическом образце Fe в форме сферы (это изотропная форма) три ОЛН – [100], [010] и [001] – равноправны. Но в образце в форме тонкой пластинки, перпендикулярной оси [001], эта ось уже не является осью легкого намагничивания. Действительно, намагнитить пластинку вдоль этой оси гораздо труднее, чем вдоль осей [100] и [010], лежащих в плоскости пластинки. Так, из-за анизотропии формы образец из магнитотрехосного стал магнитодвухосным. Если теперь пластинку слегка растянуть вдоль [100], т.е. создать одноосные упругие направления, то эта ось станет легчайшей, а образец – магнитоодноосным.

Рассмотрим однородно намагниченный вдоль оси легкого намагничивания кристалл (рисунок 35а). В этом состоянии образец, подобно постоянному магниту, создает поле (Нm), обладающее большой энергией (Еm). Как любая термодинамическая система кристалл стремится перейти в равновесное состояние с минимумом энергии. Есть ли возможность уменьшить энергию Еm? Да, есть. Эту энергию можно уменьшить примерно в два раза, если в образце возникнут два домена (рисунок 35б). Заметьте, если на рисунке 35а образец намагничен до насыщения (J = Js), то в состоянии на рисунке 35б он размагничен (J=0). Отсюда понятно, почему поле Н называют размагничивающим, а энергию Еm – магнитостатистической, или размагничивающей, энергией. Можно и дальше понизить Еm, если увеличить число доменов (рисунок 35в). Однако, начиная с состояния на рисунке 35б, появляется новый объект – доменная граница («стенка»). В стенке происходит поворот Js от направления «вверх», до направления «вниз» (на рисунке 35б), т.е. отклонение Js от ОЛН и соответственно появление энергии магнитной анизотропии. Общая граничная энергия Еg = gS, где g– энергия, приходящаяся на единицу площади стенки, S – суммарная площадь всех стенок. Таким образом, увеличивая число доменов, выигрываем в Еm и проигрываем в Еg. В итоге в равновесном состоянии в кристалле сформируется такая доменная структура (с таким числом доменов), которая обеспечивает минимум его суммарной энергии.[6, с. 7-8]


Рисунок 35 - Схема образования магнитных доменов


Могут возникнуть доменные структуры, в которых магнитный поток целиком замыкается внутри образца [4, с.140-141].

На рисунке 36 структуры имеют нулевую магнитную энергию. Здесь границы «замыкающих доменов», имеют форму трехгранных призм вблизи концевых граней кристалла, образуют углы по 450 с намагниченностью «своих» доменов и с намагниченностью соседних (900-ное соседство). Компоненты намагниченности в направлении, нормальном к границе, не претерпевает разрыва на границе, и никаких магнитных полей, связанных с намагниченностью, не возникает. Магнитный поток замыкается внутри кристалла, отсюда и термин «замыкающие домены» для доменов у поверхности кристалла, становящихся элементом магнитной цепи.

Страницы: 1, 2, 3, 4, 5


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.