рефераты скачать

МЕНЮ


Исследование физических явлений в диэлектрических жидкостях инициируемых лазерным излучением


Рисунок.3. Качественная схема, иллюстрирующая модель диссоциации сложных молекул в поле ИК – излучения


Детальные исследования процесса диссоциации сложных молекул излучением ИК – диапазона частот позволили выяснить характер этого процесса, объяснить его относительно большую вероятность и, тем самым, возможность наблюдения при не очень большой интенсивности излучения, а также обнаружить его изотопическую селективность.

Схема этого процесса изображена на рис.7. В нижней части спектра плотность возбужденных состояний относительно невелика. В этой области спектра происходит многофотонное возбуждение молекулы в фиксированное дискретное возбужденное состояние. Этот переход носит изотопически селективный характер. Степень многофотонности этого перехода зависит от конкретного типа молекулы. Как правило, это трехфотонное возбуждение, реже двухфотонное, но не более чем четырёх - пятифотонное. Таким образом, вероятность этого перехода относительно велика и для его реализации не требуется очень большой интенсивности излучения [8].

 Выше по спектру, при больших энергиях возбужденных состояний, спектр приобретает характер колебательного квазиконтинуума. Это означает, что дальнейшее увеличение энергии молекулы происходит в результате ряда последовательных однофотонных квазирезонансных переходов. Очевидно, что вероятность каждого такого перехода весьма велика, так что молекула быстро набирает энергию порядка энергии диссоциации. Причиной возникновения квазиконтинуума является очень быстрое возрастание числа переходов, которое может совершить молекула из данного возбужденного состояния, поглотив квант излучения. Возрастание числа переходов обусловлено высокой плотностью колебательных состояний сложной многоатомной молекулы, имеющей большое число степеней свободы, и взаимодействием этих состояний. Спектр в области верхних уровней не имеет того резкого резонансного характера, как в области нижних уровней, уровни уширены, взаимно перекрываются и образуют полосы поглощения.

Строгое теоретическое описание кинетики процесса поглощения инфракрасного излучения сложной молекулой хорошо согласуется как с этой упрощенной качественной моделью, так и с экспериментальными данными [16].


Рисунок.4. Зависимость энергии от реакционной координаты Х для элементарных химических реакций:

а – мономолекулярная реакция: б – бимолекулярная реакция


Элементарные химические реакции.

Элементарную химическую реакцию в газовой фазе можно понимать как преодоление потенциального барьера Еa (Еa - энергия активации) вдоль реакционной координаты х. Скорость временного течения реакции определяется константой скорости реакции К.

На рис.6а показана диссоциация двухатомной молекулы (х – расстояние между атомами; Еa - энергия диссоциации). На рис.6,б показано образование в бимолекулярной реакции из молекулы АВ через активированный комплекс А – В - С молекулы ВС.

Температурная зависимость константы скорости реакции К приближенно описывается уравнением Аррениуса:

 в случае термического возбуждения


 в случае поглощения фотонов



Где С,  – постоянные, слабо зависящие от температуры.

 Благодаря увеличению внутренней энергии молекул вследствие поглощения при известных обстоятельствах можно существенно уменьшить или совсем исключить значительные затраты на тепловую энергию (высокие температуры) для инициирования реакции.

 Различная абсорбционная способность молекул представляет возможность для селективного фотохимического стимулирования в результате того, что, например, в смеси активизируется только определенный сорт молекул путем соответствующего выбора частоты света.

 Различия в спектре поглощения молекул с одинаковым элементным составом возникает за счет пространственной структуры (цис-, транс-изомерия), различного изотопного состава (важно для разделения изотопов), изомерии ядер атомов.

Существует возможность внутримолекулярной селективности.

 Выбором энергии фотона изменяется внутренняя энергия молекулы (независимо от температуры газа). Как следствие этого, имеется возможность протекания различных химических реакций с различающимися друг от друга энергиями активизации (нагревание реакционной смеси всегда приводит к ускорению реакции с минимальной энергией активации). С помощью лазеров могут быть инициированы или ускорены химические реакции, которые не протекают при термическом возбуждении.

 Внутреннюю энергию молекулы приближенно можно разделить на:

 электронную энергию Еe1 : Еe1 составляет несколько эВ, поглощение в видимой и УФ-областях спектра;

 колебательную энергию Еv1b : Еv1b = 0,1  0,01 эВ, поглощение в ближней ИК-области спектра;

 вращательную энергию Еrot : Еrot = 0, 001  0, 0001 эВ, поглощение в дальней ИК- области спектра до субмиллиметровых волн.

 Отсюда получается различные возможности для активации химических реакций.


Рисунок.5.

I – в видимой и УФ – областях спектра; II – в комбинированном поле лазерного излучения; III – одноступенчатые процессы (а) и многофотонные процессы (б) в ИК – областях спектра; 1 – предиссоциация; 2 – изомерия; 3 – химическая реакция; 4 – предиссоциация вследствие столкновений (М) в магнитном поле (Н); 5 – двухступенчатая ионизация; 6 - двухступенчатая диссоциация; 7 – двухступенчатая диссоциация; 8 - двухступенчатая ионизация; 9 – двухступенчатая изомеризация; 10 - химическая реакция; 11 - химическая реакция; 12 - диссоциация; 13 – изомеризация.

Рисунок.6. Лазерные фотохимические процессы: а – одноступенчатый процесс; б – двухступенчатый процесс.


Рисунок.7. Схема уровней ангармонического осциллятора (- расстояние между ядрами)

 Рисунок..8. Возможные активации колебательных состояний в молекуле: а – одноступенчатый процесс; б – возбуждение в обертонные полосы; в – двухступенчатый процесс; г – комбинационное рассеяние.


Рисунок.9. Многофотонное поглощение в ИК – области спектра.

Рисунок.10. Возможные активации электронных состояний в молекуле: одноступенчатые процессы: а – возбуждение электронного состояния; б – фотодиссоциация; в – фотопредиссоциацияl; г – двухступенчатый процесс.


Рисунок.11. Красное смещение непрерывной УФ – полосы поглощения за счет возбуждения колебаний молекулы (двухатомная молекула,  - расстояние между ядрами)



2.4Туннельный эффект в лазерном поле


Одно из принципиальных отличий многофотонной ионизации от однофотонной состоит в следующем. Поскольку энергия каждого светового кванта в многофотонном случае может быть очень мала, а следовательно, велик период световых колебаний, многофотонная ионизация должна в пределе переходить в случай ионизации атома в постоянном электрическом поле.

Как известно, полевая ионизация описывается квантовой механикой как туннелирование электрона под потенциальным барьером. Другими словами, ионизацию атома в постоянном поле можно рассматривать как многофотонное поглощение, когда энергия каждого отдельного фотона стремится к нулю, а число поглощенных фотонов становится бесконечным [7].

Условие возникновения туннельного эффекта в переменном поле можно качественно понять следующим образом (рис. 1). В силу когерентности лазерное излучение возможно представить как классическую электромагнитную волну, причем магнитной составляющей волны можно пренебречь. Тогда на атомный электрон действует электрическое поле, периодически изменяющееся во времени с частотой лазерного излучения. В случае, если электрон успеет протуннелировать из атомной потенциальной ямы глубиной U за один полупериод поля, он окажется ионизованным в соответствии с законами туннельного эффекта, описываемого формулой (3). В противном случае будет реализован, как говорят, многофотонный режим, который описывается формулой (2).


 (3)



В этой формуле m и е - масса и заряд электрона, а U— потенциал ионизации атома [4].

Возникновение туннельного эффекта в переменном поле. За один полупериод поле в окрестности атома изменяется от кривой (1) до кривой(2). Если за это время электрон успеет "просочиться" через потенциальный барьер, образованный полем атомного остатка и лазерным полем, произойдет туннельный эффект; в противном случае реализуется многофотонный режим.



б).

Рисунок.13.Схема туннелирования электрона через квазистатический потенциальный барьер в направлении действия поля;

 а – атом в отсутствии внешнего поля, штрих – пунктирная линия – кулоновский потенциал,

б – атом в поле напряженностью F, сплошная кривая – потенциальный барьер. 0 – атомное ядро, Ei – энергия связи электрона в атоме, V - высота барьера, z – координата вдоль направления поля. При V > Ei происходит процесс надбарьерного развала атома

2.4.1 Применение модели Келдыша-Файсала-Риса в качестве теоретического метода описания туннельного механизма пробоя

В основу теоретических методов описания процесса нелинейной ионизации атомов положены несколько основных закономерностей, характеризующий этот процесс. Перечислим эти закономерности.

·                   Большая напряжённость поля излучения, при которой реализуется процесс нелинейной ионизации атомов; речь идёт не только о полях субатомной(F<Fa), но и атомной (F=Fa) и сверхатомной (F>Fa) напряжённости.

·                   Необходимость описания переходов электрона, происходящих при воздействии двух полей сравнимой амплитуды – кулоновского поля атомного остова и внешнего поля излучения.

·                   Необходимость учёта возмущения атомного спектра внешним ионизующим полем при возникновении резонансного перемещения атомных состояний, или нерезонансного изменения их энергии за счёт эффекта Штарка.

·                   Возможность использования полуклассического метода описания взаимодействия атома с полем излучения, в рамках которого поле описывается на языке классической физики, а атом – на языке квантовой механики. Возможность описания излучения на языке классической физики обусловлена большим числом когерентных фотонов, под действием которых происходит процесс нелинейной ионизации.

·                   Импульсный характер поля излучения большой напряжённости и типичная форма импульса, в которой длительность фронта порядка длительности  самого импульса. Численно величины лежат в пределах от нано-до фемтосекунд. Таким образом, при теоретическом описании надо учитывать характер включения внешнего поля, который может быть как мгновенным, так и адиабатическим [2].

Очевидно, что при таком количестве основных закономерностей нет надежды на создание аналитического теоретического описания процесса нелинейной ионизации атомов. Соответственно в принципе имеются лишь две возможности – развитие метода численного расчёта для фиксированных значений параметров, характеризующих атом и поле излучения, или развитие приближённых методов аналитического описания, справедливых лишь в определённой области изменения основных параметров, или при пренебрежении теми или другими основными закономерностями.

 Помимо указанных выше основных закономерностей, укажем ещё ряд существенных моментов, которые определяют характер теоретического описания процесса нелинейной ионизации атомов.

 Теоретические методы изучения взаимодействия электромагнитного излучения с атомами основаны на тех или иных приближениях для решения уравнения Шредингера для системы « атом + поле излучения». Так как поле электромагнитного излучения включается и выключается, то нестационарное уравнение Шредингера с начальным условием, соответствующим отсутствию электромагнитного поля, представляет собой задачу Коши (т.е., задачу нахождения решения уравнения, удовлетворяющего определённым начальным условиям). Ее решение раскладывается по невозмущенным собственным волновым функциям системы после включения поля, и определяются вероятности различных переходов. При этом поле электромагнитного излучения предполагается классическим, что соответствует реальной постановке экспериментов по взаимодействию лазерного излучения с атомарными системами [2].


2.5 Выводы по главе 2


1.                 Анализ литературных источников показал, что существующие работы, посвященные пробою жидкостей, не имеют полной теории пробоя жидкостей. Основные электрические свойства жидкостей, по-видимому, определяются «ближним порядком», т.е. характером взаимодействия молекул с ближайшими соседями, как это имеет место у полупроводников.

2.                 Несмотря на трудности связанные с отсутствием полной теории пробоя жидкостей, были установлены закономерности пробоя. Основными процессами электрического пробоя жидкости в начальной стадии являются многофотонная ионизация каскадная, или лавинная ионизация. Первые электроны появляются благодаря зависящему от частоты туннельному эффекту, на высоких частотах туннельный механизм эквивалентен многофотонной ионизации.

3.                 Установлено, что пробой с помощью лазерного излучения можно получить, используя фотохимические вещества либо за счет нелинейной ионизации вещества.

4.                 Основными параметрами, влияющими на характер взаимодействия лазерного излучения с веществом, являются:

·                                            потенциал ионизации вещества;

·                                            интенсивность лазерного излучения.

·                                             

3Физико-математическая модель процессов ионизации вещества под воздействием лазерного излучения

3.1 Набор энергии электроном в осциллирующем поле


Чтобы ионизовать атом, электрон должен приобрести от поля энергию, равную как минимум потенциалу ионизации I. Строго говоря, при излучении в видимом диапазоне этот процесс имеет квантовый характер. Однако, как мы увидим ниже, с определенными оговорками его можно описать и на основе простых классических (неквантовых) представлений, и это дает правильные результаты. Поэтому рассмотрим, как электрон набирает энергию в поле электромагнитной волны. Как показывают оценки, амплитуда колебаний электрона в световом поле гораздо меньше длины волны, поэтому, рассматривая осцилляции электрона под действием переменного электрического поля волны, последнее можно считать однородным в пространстве и осциллирующим только во времени:


;


Под действием электрической силы (магнитная мала) электрон совершает вынужденные колебания на фоне поступательного движения с какой-то скоростью. В результате рассеяния при упругих столкновениях с атомами направления движения электрона каждый раз изменяются резко и случайным образом, поэтому поступательное движение является хаотическим. Фиксируя внимание на неком "среднем" электроне, то есть усредняя движение всех электронов, можно исключить из рассмотрения хаотическое движение, средний вектор скорости которого равен нулю, и составить уравнение движения для чисто колебательной скорости V [7].

Она меняется во времени под действием электрической силы — eE(t) и в результате потери направленного импульса в актах рассеяния. В случае изотропного закона рассеяния электрон при столкновении в среднем теряет свой импульс mV полностью, значит, в 1 секунду он теряет в среднем .

где— частота упругих столкновений. N -плотность атомов,  — средняя скорость хаотического движения, которая обычно много больше колебательной;  - эффективное сечение рассеяния. При неизотропном законе рассеяния следует пользоваться так называемым транспортным сечением, где  — средний косинус угла рассеяния, и соответствующей эффективной частотой столкновений , которые мало отличаются от  и . Уравнение колебательного движения электрона с учетом указанных потерь и импульса среде (трения)


 , (3)


легко интегрируется и дает


,  , (4)


При отсутствии столкновений, при =0, электрон колеблется с амплитудами скорости u= и смешения . Столкновения мешают электрону приобрести полный размах колебаний, так как каждый раз. "недобрав" полные амплитуды u и , электрон резко меняет направление своего движения и начинает раскачиваться заново. Поэтому амплитуды скорости и смешения при увеличении частоты столкновений уменьшаются.

За одну секунду поле совершает над электроном работу


;


где знаком  обозначено усреднение по времени, то есть за период колебаний. Эта работа идет на увеличение кинетической энергии электрона , в основном энергии его хаотического движения, которая скоро становится гораздо больше энергии колебательного движения . Проделывая с помощью формулы (5) для  операцию усреднения, найдем скорость набора энергии в осциллирующем поле


 , (5)


где - среднеквадратичное электрическое поле в волне.

Рассматривая процесс набора энергии электроном в поле световой волны с квантовых позиций (электрон поглощает и вынужденно испускает световые кванты при столкновениях с атомами), можно показать, что средняя скорость набора энергии в поле фотонов выражается той же формулой (6). где поле Е связано с плотностью потока фотонов F естественным соотношением . Формула оказывается справедливой не при жестком условии, что среднее приобретение энергии при столкновении , а при более мягком условии, что сама средняя энергия . Но средняя энергия электронного спектра при пробое сравнима с потенциалом ионизации, иначе ионизационный процесс не мог бы протекать столь быстро. Потенциал ионизации составляет, как мы видели, много квантов, поэтому неравенство  в самом деле можно считать выполненным [2].

Поле связано с интенсивностью соотношением


, В/см (6).

 

Скорость дрейфа электронов приблизительно равняется:


 ,


 ; (7)


где - подвижность связана с коэффициентом диффузии электронов соотношением.


3.2 Модель келдыша – файсала – риса


 Исходная модель Келдыша. Цель этого раздела состоит в аналитическом приближенном решении нестационарного уравнения Шредингера, описывающего поведение атомарной системы во внешнем электромагнитном поле:

 , (8)


Здесь - невозмущенный гамильтониан атомарной системы, а величина  представляет собой потенциал взаимодействия атомарной системы с внешним электромагнитным полем. Предполагаются известными собственные функции и собственные значения энергии стационарного гамильтониана:


, (9)


Точное выражение для амплитуды перехода из начального связанного состояния атома или атомарного иона i в конечное состояние непрерывного спектра f под действием поля лазерного излучения имеет следующий вид ( напомним, что всюду используется атомная система единиц, в которой постоянная Планка, масса электрона и его заряд предполагаются равными единице):


, (10)


Здесь конечное состояние описывается точной волновой функцией . Выражение (10) эквивалентно исходному нестационарному уравнению Шредингера (8).Вероятность связанно-свободного перехода  за время t дается квадратом модуля выражения (10).

Начальное состояние дискретного спектра атома в (10) является невозмущенным и берется из решения уравнения (9).Взаимодействие атома с электронным полем бралось Келдышем в дипольном приближении (так как размеры атома малы по сравнению с длиной волны электромагнитного излучения), используя так называемую калибровку «длины»


, (11)


 Здесь F – вектор напряженности электромагнитного поля электромагнитной волны. Предполагалось, что это поле мало по сравнению с характерным атомным полем рассматриваемой атомной системы [2].

 Основная идея Келдыша заключалась в том, чтобы заменить неизвестную точную волновую функцию конечного состояния на так называемую волковскую волновую функцию, в которой пренебрегается полем атомного остова и учитывается только поле электромагнитной волны. В калибровке длины этой волновая функция имеет следующий вид


, (12)


 Здесь векторный потенциал электромагнитного поля связан с напряженностью поля известным соотношением

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.