рефераты скачать

МЕНЮ


Ферромагнитные жидкости

§3. Магнитная восприимчивость магнитных жидкостей и ее функциональные зависимости

Согласно одночастичной модели, предполагающей возможность описания процессов намагничивания магнитных жидкостей с помощью теории Ланжевена, зависимость их магнитной восприимчивости от концентрации дисперсной фазы должна быть линейной. Однако, в первых же работах, посвященных исследованиям в этой области [16, 17] было показано, что она таковой не является.

На рисунке 8 приведена зависимость магнитной восприимчивости магнитной жидкости с магнетитовыми частицами и керосином в качестве дисперсионной среды от объемной концентрации дисперсной фазы [17], измеренной в переменном поле, частотой 200 Гц, при различных значениях напряженности дополнительно приложенного постоянного магнитного поля.


Рисунок 8. Зависимость относительной величины магнитной восприимчивости магнитной жидкости от объемной концентрации дисперсной фазы при отсутствии внешнего магнитного поля (кривая 1) и при различных значениях его напряженности; 2 - Н=280 А/м, 3- Н=360 А/м, 4 - Н=1200 А/м.


Как видно из рисунка, все графики являются нелинейными, при этом можно констатировать, что наиболее сильное изменение тангенса угла наклона представленных зависимостей наблюдается в области концентраций  4 -6%. Увеличение внешнего постоянного магнитного поля приводит к уменьшению нелинейности концентрационной зависимости магнитной восприимчивости вплоть до его полного исчезновения при напряженности поля = 2 кА/м. Аналогичные зависимости получены также и при непосредственном использовании, в качестве измерительного, постоянного магнитного поля (с помощью баллистического метода). В последующем, о получении нелинейной зависимости магнитной восприимчивости магнитных жидкостей на основе керосина от объемного содержания магнетита сообщалось в работах А.Ф. Пшеничникова с соавторами [18,19]. Нелинейный характер зависимости магнитной восприимчивости от концентрации дисперсной фазы был обнаружен также для других типов магнитных жидкостей [20]. На рисунке 9 показана зависимость действительной части комплексной магнитной восприимчивости (частота 200 Гц) от концентрации магнетитовых частиц для магнитной жидкости на основе вакуумного масла, которая, как можно видеть из рисунка, заметно изменяет свою крутизну при концентрации  = 4%. Следует отметить, что во всех случаях, при проведении концентрационных исследований магнитной восприимчивости магнитных жидкостей, изменение концентрации дисперсной фазы, как правило, осуществляется путем последовательного разбавления исходного образца жидкостью, используемой в качестве дисперсионной среды.


Рисунок 9. Зависимость действительной части магнитной восприимчивости (кривая 2, f=200 Гц) и магнитной восприимчивости в постоянном поле (кривая 1) от объемной концентрации дисперсной фазы при напряженности измерительного поля 160 А/м.

Однако, такая процедура может привести к частичному нарушению агрегативной устойчивости магнитной жидкости. Например, разбавление магнитной жидкости чистым керосином при определенных условиях приводит [21Дроздова] к появлению микрокапельных агрегатов, в которых концентрация дисперсных частиц выше, чем в омывающей их среде. Процесс формирования микрокапельных агрегатов (который подробно будет рассмотрен в следующей главе) по-видимому, характерен только для магнитных коллоидов и обусловлен, как магнитодипольным взаимодействием дисперсных частиц, так возникающим дефицитом ПАВ при разбавлении исходного образца. Вследствие этого, интенсивность образования микрокапельных агрегатов может усиливаться на определенном этапе разбавления, соответствующем некоторой области объемных концентраций. В свою очередь, это должно сказываться на характере концентрационной зависимости магнитной восприимчивости среды. Действительно, в работе [17], резкое изменение крутизны концентрационной зависимости магнитной восприимчивости МЖ на основе керосина при концентрациях 4 – 6 % идентифицируется как ее излом, связанный с возникновением агрегатов при достижении этой области концентраций при разбавлении исходного образца керосином. При выдерживании в течение длительного времени приготовленных образцов с различной концентрацией дисперсной фазы, содержащиеся в них микрокапельные агрегаты, могут растворяться или оседать на дно контейнера. В этом случае концентрационная зависимость магнитной восприимчивости должна отличаться от аналогичной зависимости, полученной при измерении  свежеприготовленных образцов. Действительно, зависимость магнитной восприимчивости от концентрации дисперсной фазы, полученная после выдерживания образцов в течение нескольких недель (при определении концентрации дисперсной фазы непосредственно перед измерением) является более сглаженной, без видимых изломов. Связь обнаруженного излома концентрационных зависимостей магнитной восприимчивости МЖ на основе вакуумного масла [20] с процессами возникновения агрегатов подтверждается исследованиями рассеяния света тонкими слоями образцов, использованных при магнитных измерениях. Как можно видеть из рисунка 10, в области концентраций, соответствующей излому концентрационной зависимости магнитной восприимчивости, происходит заметное увеличение изотропного рассеяния света в случае отсутствия внешнего магнитного поля (кривая 1). Дополнительное воздействие постоянного магнитного поля делает рассеяние света анизотропным с существенным ростом в области концентраций, соответствующих указанному излому (кривая 2).


Рисунок 10. Зависимость относительной интенсивности светорассеяния от концентрации дисперсных частиц.


Таким образом, образование агрегатов при разбавлении магнитных жидкостей, может приводить к особенностям концентрационных зависимостей их магнитной восприимчивости. Вместе с тем, как уже указывалось выше, эта зависимости являются нелинейными даже в случае отсутствия видимых структурных превращений. Очевидно, что характер зависимостей магнитной восприимчивости магнитных жидкостей от концентрации дисперсной фазы во многом определяется диполь-дипольным взаимодействием однодоменных дисперсных частиц.

Дипольное взаимодействие должно определять характер и температурной зависимости магнитной восприимчивости магнитных жидкостей. Действительно, в первых работах, посвященных исследованию этих зависимостей [95, 96 Моя дисс.] было показано, что зависимость магнитной восприимчивости от температуры может быть представлена в виде выражения, аналогичного закону Кюри-Вейса, т.е.



где ,  - температура, определяемая интенсивностью взаимодействия дипольных частиц.

Следует указать на необходимость осторожности при интерполяции, полученной экспериментально зависимости , какой-либо функцией, вследствие зависимости намагниченности насыщения магнетита от температуры, а также теплового расширения дисперсионной среды. В связи с этим, в работе [95] при расчете , полученная экспериментально зависимость  перестраивалась с учетом этих факторов, а в работе [96] экспериментальные исследования проводились для концентрированной жидкости на основе толуола, имеющего малый коэффициент теплового расширения (?). Напомним, что в приближении одночастичной модели температурная зависимость магнитной восприимчивости магнитной жидкости должна определяться выражением (?), т.е законом Кюри .

Проведенный в [95,96] анализ результатов экспериментальных исследований позволил определить значение , которое, как оказалось, колеблется в пределах 150 – 210 К для различных исследованных образцов.

Таким образом, для магнитной восприимчивости магнитных жидкостей вместо (1.3) может быть использовано выражение:


 ( )


С учетом этого, для расчета диаметра частиц по магнитным измерениям в слабых полях должна быть использована формула:


 (х)


В качестве примера были проведены магнитогранулометрические расчеты для двух образцов магнитной жидкости ( и ). Предварительно была проведена оценка диаметра частиц  по формуле ( ), полученной на основе теории Ланжевена без учета взаимодействия частиц. В результате для первого образца было получено , для второго - . Гранулометрические расчеты, выполненные на основе формулы (х), учитывающей взаимодействие частиц дали для образца  (), , для образца  () . Таким образом, учет взаимодействия частиц существенно снижает значение диаметра частиц, рассчитанное по магнитным измерениям в слабых полях. В то же время можно заключить, что при магнитогранулометрических расчетах в сильных полях взаимодействием частиц можно пренебречь, вследствие несущественного вклада локальных полей частиц в намагничивающее поле.

Дальнейшие исследования показали, что линейность зависимостей  нарушается при понижении температуры до некоторой температуры , значение которой увеличивается при дополнительном воздействии постоянного магнитного поля (рис.11).

Рисунок 11. Температурная зависимость обратной величины действительной части магнитной восприимчивости МЖ на основе керосина (р = 1,88*103 кг/м3) при различных значениях напряженности постоянного поля Н(кА/м); 1 - 1,4, 2 - 1,1, 3 - 0,54, 4-0.


В дальнейшем были проведены температурные исследования магнитной восприимчивости устойчивых к агрегированию при нормальных условиях МЖ на основе керосина в области более низких температур, включая точку перехода ( ) из жидкого состояния в твердое. На рисунке 12 приведены температурные зависимости эффективных величин обратной действительной и мнимой частей магнитной восприимчивости магнитной жидкости на основе керосина в температурном интервале , из которых следует, что в окрестности температуры затвердевания МЖ наблюдается минимум  (т.е. максимум ), а также максимум . В последующих исследованиях аналогичная зависимость для температурной зависимости магнитной восприимчивости получена при измерении  другими методами: баллистическим и с помощью феррометра [121Моя дис.]

Рисунок 12. Температурная зависимость обратной величины действительной (кривая 1) и мнимой (кривая 2) частей магнитной восприимчивости МЖ на основе керосина в интервале температур 170К<Т<273К


Максимум температурной зависимости был обнаружен также О’ Грэди и др. [96]. В дальнейшем, подобные исследования, вследствие возросшего к ним интереса, проводились рядом исследователей ([90, 100] и др.), которыми были получены аналогичные результаты.

При измерении МЖ на основе керосина, при дополнительном воздействии постоянного магнитного поля, происходит изменение характера этой зависимости (рис.13), а именно, в области температуры затвердевания жидкости минимум  сменяются максимумом (т.е. наблюдается минимум ). Следует указать условия представленной зависимости: образец сначала замораживали при температуре около - 400С, затем помещали его в постоянное магнитное поле и получали указанную зависимость мостовым методом при частоте 200 Гц путем повышения температуры до 60 – 700 С. Все описанные выше особенности температурных зависимостей магнитной восприимчивости исследованных образцов в области температуры их замерзания можно связать с блокировкой броуновских степеней свободы однодоменных частиц при затвердевании среды. Действительно, понижение температуры приводит к уменьшению вероятности тепловых флуктуаций магнитного момента частицы и затруднению его вращения относительно твердой матрицы. В этом случае, в используемом в качестве измерительного переменном магнитном поле, с периодом меньшим времени неелевской релаксации (определяемой выражением (1.1)) частица ведет себя как магнитожесткий диполь. Поэтому, намагничивание магнитной жидкости происходит за счет вращения твердой матрицы частицы в жидкой среде под воздействием магнитного поля. Естественно, что затвердевание дисперсионной среды приводит к блокировке таких вращений и, как следствие, уменьшению намагниченности и магнитной восприимчивости магнитной жидкости. Тот факт, что уменьшение магнитной восприимчивости при затвердевании среды происходит не скачкообразно, а плавно, по-видимому связано с полидисперсностью системы: в магнитной жидкости присутствуют достаточно малые частицы, сохраняющие неелевский механизм релаксации магнитного момента при достаточно низких температурах. Подтверждение правильности предполагаемых механизмов намагничивания магнитных жидкостей может быть получено с помощью исследования частотной зависимости их комплексной магнитной восприимчивости. Впервые такие исследования были предприняты М.М. Майоровым [].


§4. Магнитодипольное взаимодействие и эффективные поля в магнитных жидкостях


Очевидно, что использование функции Ланжевена для описания процесса намагничивания магнитных жидкостей возможно, когда процентное содержание дипольных частиц в единице объема мало и их взаимодействием можно пренебречь. По оценкам Евдокимова [123,124 Моя Д.], применение уравнения Ланжевена оправдано, если концентрация частиц имеет порядок 0,1 объемных процентов. Объемная концентрация дисперсной фазы магнитных жидкостей достигает 20 – 25 %, в связи с чем возник вопрос о применимости уравнения Ланжевена для описания процесса их намагничивания. В первых работах [10 -13] расхождение экспериментально полученных кривых намагничивания с кривой Ланжевена объяснялось полидисперсностью системы. Однако, для распространенных в настоящее время высококонцентрированных магнитных жидкостей становится необходимым учет межчастичных взаимодействий. Можно предположить, что для этих целей могут быть использованы разработанные ранее теории для учета дипольного взаимодействия молекул при поляризации жидких диэлектриков. Анализ концентрационной зависимости магнитной восприимчивости магнитных жидкостей в слабых полях позволяет судить о применимости таких теорий для учета магнитодипольного взаимодействия в магнитных жидкостях. Сравнение экспериментально полученной концентрационной зависимости магнитной восприимчивости устойчивых магнитных жидкостей с теоретическими кривыми Клаузиса-Моссоти и Дебая-Онзагера [61М .Д.], а также с линейной зависимостью магнитной восприимчивости от концентрации, следующей из теории Ланжевена, иллюстрируется рисунками 14 и 15.


Рисунок 14. Сравнение экспериментально полученной концентрационной зависимости магнитной восприимчивости МЖ на основе керосина (3) с теоретическими кривыми Клаузиса-Моссотти (1), Дебая-Онзагера (2) и Ланжевена (4) .


На рисунке 14 показана экспериментальная зависимость (кривая 3) магнитной восприимчивости от объемной концентрации дисперсной фазы для всего интервала исследуемых концентраций в сравнении с расчетными кривыми 1 и 2, удовлетворяющими теориям Клаузиса-Моссоти ,  и Дебая-Онзагера . При расчетах теоретических кривых использовалось значение , определенное как величина, равная угловому коэффициенту начального участка зависимости  (принималось, что вклад взаимодействия частиц на этом участке пренебрежимо мал). На рисунке 15 приведены те же кривые, но в области малых концентраций и в увеличенном масштабе.


Рисунок 15. Сравнение экспериментально полученной концентрационной зависимости МЖ (3) с теоретическими кривыми Клаузиса-Моссотти (1) и Дебая-Онзагера (2) в области малых концентраций дисперсной фазы.


Из рисунков 14 и 15 можно заключить, что экспериментально полученная зависимость  наиболее близка к кривой Дебая-Онзагера, однако, отличается от всех теоретических кривых более резким изменением хода в области концентраций 5 – 6 %, что позволяет сделать вывод о наличии аномалии в концентрационной зависимости  в этой области концентраций. Следует, однако, отметить, что для некоторых исследованных образцов указанной аномалии не наблюдалось, а в работах [] она и вовсе обнаружена не была. Из этих же работ следует, что экспериментальная кривая  хоть и близка к теоретической кривой Дебая-Онзагера, но лежит ниже, а не выше ее, как это показано на рисунках 14 и 15. Вместе с тем, о полном согласии экспериментальных результатов с указанными теоретическими зависимостями ни в одной работе не сообщалось.

Наиболее распространенным способом учета диполь-дипольного взаимодействия является введение так называемого эффективного поля. В случае диэлектриков, поле, реально действующее на один из диполей системы представляется в виде . Введение этого понятия для расчета дипольного взаимодействия молекул диэлектрика, как известно, дает теория Лоренца, из которой, по-существу, и следует теоретическая кривая Клаузиса-Моссоти. Согласно этой теории значение , определяющее эффективность диполь-дипольного взаимодействия должно быть равным . Однако, несмотря на распространение этой теории, ее применимость не подтверждена даже для диэлектриков с неполярными молекулами, для которых она и была разработана. Поэтому, возможность описания с достаточной точностью с помощью этой теории системы магнитных диполей также вызывает сомнение. Вместе с тем, очевидно, что для первоначальных оценок возможно использование общей теории эффективного поля. В этом случае для намагниченности МЖ в приближении монодисперсности может быть записано выражение:


, ()


где m – магнитный момент дисперсной частицы, n – числовая концентрация частиц,  - константа эффективного поля.

Из (0) для нетрудно получить:


 , ()


где  - объемная концентрация дисперсной фазы, - объем дисперсной частицы.

Последняя формула может быть использована для расчета эффективных полей и оценки эффективности диполь-дипольного взаимодействия дисперсных частиц. При этом для расчета первого члена () может быть использовано известное значение намагниченности насыщения магнетита  и определенный с помощью электронного микроскопа средний объем дисперсных частиц, позволяющие рассчитать момент частицы (). Однако, намагниченность насыщения магнетита может колебаться в некоторых пределах [125 МД], а определение среднего объема магнитного керна частицы с помощью электронного микроскопа также представляет трудность, так как она может иметь немагнитный слой [13 МД]. В этой связи более корректным является определение величины  как углового коэффициента начального участка зависимости , где вклад взаимодействия частиц пренебрежимо мал.

Другой подход к определению эффективных полей связан с анализом действующих на дипольную частицу сил [126 МД]. В работе [127 МД] на основании такого анализа получена формула для расчета эффективных электрических полей в жидких диэлектриках. Механический перенос подхода, использованного при ее выводе, возможный благодаря глубокой аналогии между законами электрической поляризации и намагничивании, позволяет получить аналогичную формулу [М статья в МГ] для расчета эффективных магнитных полей в магнитных жидкостях в приближении однородности среды:


 ()


Как следует из [3], полученное выражение для эффективного поля согласуется с формулой Лоренц-Лоренца при выполнении условия


, (2)


которое непосредственно следует из того, что функция Клаузиса-Моссоти не зависит от плотности (концентрации диполей):


 (3)


Выражение (1) для эффективного поля может быть представлено в виде , т.е.


,


откуда для параметра эффективного поля  следует:


. (4)


Полученная формула позволяет рассчитать параметр эффективного поля по экспериментально полученной зависимости .

Изучение диполь-дипольного взаимодействия однодоменных дисперсных частиц возможно также с помощью анализа температурных зависимостей магнитной восприимчивости магнитных жидкостей. Выражение для расчета эффективного поля можно получить, воспользовавшись подходом, предложенным в [2], возможным благодаря непосредственной связи эффективного поля с действующей на частицу среды силой. При этом, естественно воспользоваться результатами макроскопической теории для объемной плотности сил в магнитном поле. Ранее, выражение для таких сил выводилось во многих работах [3-5] путем приравнивания вариации свободной энергии (при постоянной температуре и векторном потенциале магнитного поля) работе внутренних сил. Вместе с тем авторами работы [6] было показано, что в более общем случае, при вычислении вариации полной (или внутренней) энергии необходимоучитывать вариации температур или энтропий. Если осуществить некоторое виртуальное перемещение элемента магнитной жидкости , находящейся в магнитном поле Н (например, в поле соленоида) так, что часть жидкости вытиснится из пространства, занимаемого полем, то изменение энергии поля, соответствующее изотермическому процессу может быть записано в виде, аналогичном выведенного в [3] для жидкого диэлектрика:


, (5)


где  - концентрация дипольных частиц.

Можно предположить, что в общем случае, с учетом изменения температуры это выражение должно быть дополнено слагаемым , т.е. . Изменение температуры определится выражением для магнетокалорического эффекта:


. (6)


Тогда, с учетом предложенного характера виртуального перемещения и выражения для изменения температуры  можно получить:


 (7)


Наложим ограничение на процесс виртуального перемещения, предположив, что оно не сопровождается изменением концентрации дипольных частиц. В этом случае, второй член в выражении (5) можно положить равным нулю. Тогда, окончательно, для изменения полной энергии с учетом  получим:


 (8)


Приравняем полученное выражение для  работе  пондеромоторных сил, взятой с обратным знаком, т.е. . С учетом этого, нетрудно получить:


.


Используя соотношения векторного анализа


 (9)


С учетом того, что , получим:

Страницы: 1, 2, 3, 4, 5, 6


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.