рефераты скачать

МЕНЮ


Електровимірювальні прилади



припадала на середину вимірюваного діапазону частот.


Рис.5


У разі відхилення вимірюваної частоти від середини діапазону змінюються опори реактивних елементів ХС1=l/2πfxC1, ХС2= l/2πfxC2, XL2=l/2πfxL2 і співвідношення між струмами в котушках, унаслідок чого стрілка відхиляється на кут, пропорційний вимірюваній частоті fx. Аналогічно працює й електромагнітний частотомір.

1.6 Вимірювальний перетворювач частоти в струм


В аналогових електронних частотомірах застосовується попереднє перетворення частоти в напругу. Принцип дії вимірювального перетворювача частоти в напругу ґрунтується на формуванні імпульсів, частота яких дорівнює вимірюваній частоті, а електричний заряд імпульсів є постійним. Середнє значення струму таких імпульсів пропорційне вимірюваній частоті.

Вимірювальний перетворювач частоти в напругу становить основу так званого конденсаторного частотоміра, спрощену схему якого наведено на рисунку 6. Періодичний сигнал із частотою fx надходить на вхід формувача прямокутних імпульсів, частота яких дорівнює вимірюваній частоті. Прямокутні імпульси діють на перемикач, який з'єднує конденсатор із джерелом стабільної напруги. Упродовж часу тривалості імпульсу Ті конденсатор заряджається до напруги U0. Заряд, який накопичився за цей час на обкладках конденсатора, становитиме: Q=U0C.


Рис.6


Після закінчення дії імпульсу перемикач повертається у початковий стан і з'єднує конденсатор із резистором R. Конденсатор розряджається, і через резистор проходить струм розряду, середнє значення якого прямо пропорційне вимірюваній частоті:



Напруга на резисторі R прямо пропорційна струму, тому середнє значення напруги на резисторі Ux=RQ0fx виділяється фільтром низької частоти і вимірюється вольтметром магнітоелектричної системи.

1.7 Гетеродинний вимірювальний перетворювач частоти


Перетворення частоти сигналу широко застосовується в різних радіотехнічних пристроях. Суть частотного перетворення сигналу полягає у тому, що синусоїдний сигнал ux (t) =Uх√2sin (2πfxt+Ψx) з вимірюваною частотою fx перемножується із зразковим сигналом u0 (t) = U0√2sin (2πf0t+Ψ0) з відомою частотою f0:


 (1)


Як відомо з тригонометрії, добуток двох синусоїдних функцій виражається через різницю синусоїдних функцій:


 (2)


Застосовуючи тригонометричну тотожність (2) до добутку (1), отримаємо



Отже, на виході перемножувача буде сума двох коливань: одне з коливань має частоту fx-f0, а друге - частоту fx+f0. Пристрій, за допомогою якого здійснюється перемножування двох синусоїдних сигналів, називається "амплітудним модулятором", "змішувачем", "перемножувачем". За допомогою електронних фільтрів можна виділити із суми двох коливань одне. Здебільшого на практиці виділяють коливання з різницевою частотою fx-f0. Якщо плавно змінювати частоту f0 зразкового генератора, то частота fx-f0 наближатиметься до нуля. Це можна зафіксувати за допомогою осцилографа або на слух за допомогою головних телефонів за висотою тону.

1.8 Частотомір із перетворенням похибки квантування в інтервал часу


Основною похибкою, яка обмежує точність частотомірів, є похибка квантування. Перетворенням похибки квантування Δt в електричний заряд q, а заряду в інтервал часу ΔT (у десятки разів більший за Δt) і наступним вимірюванням інтервалу ΔT можна в десятки разів підвищити точність вимірювання частоти. Цей спосіб застосовується у цифровому універсальному частотомірі 43-64, генератор квантувальних імпульсів якого має частоту 100 МГц. На першому етапі вимірювання вимірюваний інтервал часу Тх квантується імпульсами з періодом Т0=1·10-8 с. При цьому виникають похибки Δt1 і Δt2. Сумарна похибка перетворюється в заряд конденсатора. Впродовж інтервалу Δt1 відбувається заряджання, а протягом інтервалу Δt2 - розряджання конденсатора струмом 1·10-6 А. Далі конденсатор розряджається струмом 1·10-7 А. Тривалість розряджання дорівнює ΔТ=10·Δt=10· (Δt1-Δt2). Потім ΔT квантується імпульсами з періодом Т0=1·10-8 с. Таким чином, похибка зменшується з 1·10-8 с до 1·10-9 с.


ІІ. Механічна частина


2.1 Вимірювання частоти електричної напруги


На підприємствах енергетичного профілю частоту найчастіше вимірюють за допомогою частотомірів, використання яких не викликає ніяких труднощів. Більшість частотомірів приєднують безпосередньо до мережі, частоту котрої необхідно виміряти, або до окремого джерела живлення змінного струму, частоту напруги якого слід контролювати. Необхідно лише впевнитись, що номінальна величина напруги мережі чи окремого джерела збігається з номінальною величиною напруги частотоміра, а також у тому, чи довіряти показанням частотоміра зразу ж після вмикання під напругу, чи лише після певного часу його роботи. Цей час може бути необхідний, щоб частини частотоміра, що містяться всередині його корпуса, нагрілися власним теплом, яке виникає в обмотках та осердях частотоміра, до належної температури.

Крім того, ще до встановлення і приєднання частотоміра необхідно впевнитись у відповідності умов у помешканні, де намічено встановити частотомір, тим умовам, які передбачені технічним описом приладу.

Більшість частотомірів, що застосовуються на електричних станціях та в енергосистемах, мають обмежену точність (клас їхньої точності 1,5; 1,0; 0,5; 0,2).

Разом з тим ці частотоміри потребують періодичної повірки, перш за все відомчої, яку з дозволу Державних метрологічних органів проводять метрологічні підрозділи підприємств і організацій, де експлуатують прилади. Повірка необхідна також після ремонту приладів.

При таких повірках необхідно забезпечити клас точності зразкового засобу вимірювання у 4.5 разів вищий за клас приладу, що повіряється. Якщо зразкових приладів необхідного класу точності немає, то використовують метод порівняння частот зразкового високоточного вимірювального генератора і джерела напруги змінної частоти, від якого живиться частотомір, що проходить повірку. Використовують ще і метод вимірювання частоти за допомогою частотомірного мосту.

Безпосереднє вмикання частотоміра на генератор зразкових частот часто буває неможливим через малу потужність таких генераторів.

Досить надійним методом порівняння двох частот є метод биття, реалізація якого можлива згідно зі схемою рис.7.

На цьому рисунку позначено:

ЗГ - генератор зразкової частоти; ГЧ - генератор змінної частоти живлення приладу; ЧМ - частотомір, що повіряється; П1, П2, П3 - підсилювачі; І - індикатор наявності коливань напруги; П - потенціометр.

Для чіткої роботи схеми необхідно, щоб підсилювачі П1 і П2 були однотипними, а величини напруг на їхніх виходах - однаковими (щоб досягти цього, у схемі є потенціометр П, за допомогою якого на вході до підсилювача П2 можна встановити яку завгодно величину напруги).

Індикаторний прилад І - це прилад для вимірювань постійного струму з нульовою позначкою посередині шкали. Він має бути здатним витримувати величину напруги змінного струму, яка виникає на виході підсилювача П3 при появі на його вході складених напруг, створених підсилювачами П1 і П2.


Рис.7 Точне вимірювання частоти методом биття


Порядок повірки частотоміра на подібній вимірювальній схемі може бути таким. Генератором зразкової частоти ЗГ встановлюють значення однієї з частот, вимірюваних частотоміром ЧМ. Генератором ГЧ встановлюють приблизно таку саму частоту (за показаннями частотоміра ЧМ), після чого звертають увагу на показання індикатора І. Якщо величини обох частот мало відрізняються між собою, то між напругами, що є на виходах підсилювачів П1 і П2, виникає биття - тобто почергове складання і віднімання миттєвих значень цих напруг.

Змінюючи величину частоти генератора ГЧ, досягають такого стану, при якому частота биття напруги стане зовсім малою (десь одне коливання за 5.10 с). У цьому разі можна вважати, що частоти напруг генераторів ЗГ і ГЧ зрівнюються.

Якщо в цей час показання покажчика частотоміра, що проходить повірку, відрізняється від частоти, генерованої генератором ЗГ, то, віднявши від показу частотоміра ЧМ (у герцах) дійсну частоту, з якою працює генератор ЗГ, можна визначити величину похибки частотоміра.

Метод биття можна застосовувати у виробничих лабораторіях при повірках частотомірів завдяки нескладності потрібного обладнання та достатньо високої точності вимірювань.

Застосовуючи зразковий кварцовий генератор з багатоступінчастим подільником частоти, можна отримати зразкову частоту з похибкою близько 0,000001 %.

Використовуючи термостатовані камертонні генератори, можна досягти точності, на порядок чи два меншої. Їх можна використовувати й без подільників частоти.

Іноді для визначення рівності вимірюваної і зразкової частот як нуль-індикатор використовують телефонну трубку. Це зовсім простий метод, який не вимагає додаткової апаратури, треба лише, щоб величини напруг зразкової і контрольованої частот були достатніми (і безпечними) для телефонної трубки. Але користуватись цим методом доцільно тільки при порівнянні підвищених і високих частот, бо людське вухо нездатне сприймати звуки з частотою, нижчою за 12.15 Гц. Наявність такої "мертвої" зони при порівнянні частот порядку 1000.5000 Гц і вище майже не впливає на точність вимірювань, але при порівнянні частот порядку 40.60 Гц вона зовсім недоречна, бо суттєво зменшує точність порівняння.

2.2 Відношення двох частот


В універсальних цифрових частотомірах передбачена можливість вимірювання відношення двох частот: fx і fy. Сигнали вимірюваних частот подаються на формувачі імпульсів (рис.8), які формують імпульси з крутими фронтами для зменшення похибки від дрейфу рівнів спрацювання.

Якщо одна з частот набагато більша за іншу (fx>>fy), то імпульс тривалістю Ту з виходу формувача (рис.8, а) відкриває ключ і імпульси тривалістю Тх надходять на вхід лічильника імпульсів упродовж часу Ту. Числовий відлік лічильника імпульсів дорівнюватиме:



Якщо ж частоти fx і fy близькі за значенням, то імпульси з частотою fy після формувача (рис.8, б) подаються на подільник частоти з коефіцієнтом ділення n. Числовий відлік лічильника імпульсів у такому разі дорівнюватиме:



Рис.8


Відсотковий частотомір. Сигнал частотою fx надходить на формувач імпульсів (рис.9), який формує імпульси нормованої амплітуди з крутими фронтами. Сформовані імпульси подаються на подільник частоти з коефіцієнтом ділення n1. З вихідного сигналу подільника частоти формується імпульс тривалістю T1=n1Tx=n1/fx, Генератор стабільної частоти f0 і другий подільник частоти з коефіцієнтом ділення n2 формують другий імпульс тривалістю Т2=n2Т0=n2/f0. Обидва імпульси подаються на ключ, який влаштований так, що він відкритий упродовж часу ΔТ=Т2-Т1. За час ΔТ на вхід лічильника імпульсів через ключ проходять імпульси з періодом Т0. Покази лічильника в кінці вимірювання становлять:



Рис.9


Якщо виконати умову



де fхном - номінальне значення частоти, то



Якщо fx близька до fхном і n2=100, то Nx виражатиме наближено відхилення частоти від номінального значення у відсотках.

2.3 Похибки вимірювання частоти і інтервалів часу


Вимірювання частоти і інтервалів часу супроводжується такими складовими похибок вимірювання: похибка квантування; похибка, зумовлена нестабільністю частоти генератора кванту вальних імпульсів; похибка від нестабільності порогів спрацювання формувачів імпульсів.

Похибка квантування. Якщо генератор квантувальних імпульсів синхронізований з початком вимірюваного інтервалу часу (рис.10, а), то похибка квантування Δt виникає в кінці вимірюваного інтервалу як різниця між результатом вимірювання NxT0 і вимірюваним інтервалом Тх:


Δt=NxT0-Tx.


Оскільки вимірювана величина до вимірювання невідома, то кінець інтервалу Тх може з однаковою ймовірністю припасти на будь-який момент між сусідніми квантувальними імпульсами, тому похибку квантування Δt вважають випадковою і розподіленою за рівномірним несиметричним законом з граничним значенням Т0 (рис.10, б). Математичне сподівання похибки квантування дорівнює T0/2, а середнє квадратичне відхилення σ=Т0/√12. Синхронізувати генератор квантувальних імпульсів з початком вимірюваного інтервалу Тх часто не вдається, тому похибка квантування виникає на початку Δt1 і в кінці Δt2 вимірюваного інтервалу часу Тх (рис.11). Похибки Δt1 і Δt2 розподілені за рівномірними несиметричними законами з граничним значенням Т0. Сумарна похибка квантування Δt=Δt1+Δt2 розподілена за трикутним законом (законом Сімпсона) з граничним значенням Т0. Математичне сподівання сумарної похибки квантування дорівнює нулю, а середнє квадратичне відхилення σ=Т0/√6.


Рис.10


Рис.11


Відносна гранична похибка квантування під час вимірювання частоти за визначений інтервал часу ТN дорівнює:



Отже, відносна гранична похибка квантування збільшується із зменшенням частоти. Для розширення частотного діапазону частотомірів у зону нижніх частот вдаються до таких заходів:

1.                На нижніх частотах похибку квантування можна зменшити, збільшуючи N·T0, але це веде до збільшення тривалості вимірювання, тобто до зменшення швидкодії.

2.                Застосувати множення вимірюваної частоти, в результаті чого вимірювана частота переноситься у зону високих частот.

3.                Перетворити Tх→Uх, а далі відбувається визначення числового значення 1/ Uх.

4.                Виміряти відносне відхилення вимірюваної частоти за допомогою цифрового відсоткового частотоміра.

5.                Застосувати спеціальні пристрої для вимірювання похибок дискретності Δt1 і Δt2.

6.                Вимірювати період Тх з наступним перерахунком періоду в частоту fx.

Відносна гранична похибка квантування у вимірюванні періоду дорівнює:



Таким чином, відносна гранична похибка квантування збільшується зі збільшенням вимірюваної частоти fx і зменшується зі збільшенням частоти квантувальних імпульсів f0.

Верхнє граничне значення частотного діапазону, якщо задано допустиме граничне значення похибки квантування, визначається швидкодією лічильника імпульсів, тобто максимальною частотою імпульсів f0, яку лічильник здатен підраховувати


fmах=σ·f0.


Похибка, зумовлена нестабільністю частоти генератора квантувальних імпульсів, виявляється в основному як повільний відхід частоти внаслідок старіння кварцового резонатора.

Похибка від нестабільності порогів спрацювання формувачів імпульсів зумовлена двома чинниками: зміщеннями рівнів формування в каналах і шумовими напругами, що діють на вхід формувача.

Похибка, зумовлена дрейфом порога спрацювання,



де Δu - дрейф порога спрацювання формувача імпульсів; vx - швидкість зміни вимірюваного сигналу. Якщо сигнал синусоїдний з амплітудою Um і часто тою fx, то максимальна швидкість зміни сигналу vx=2πfxUm, Якщо дрейф Δu виразити через швидкість дрейфу vd і період Тх, тобто Δu=vdTx, то вираз можна записати у такому вигляді:


 Відносна похибка


Похибка, зумовлена впливом шуму із середнім квадратичним відхиленням σN на вхід формувача імпульсів,



Відносна похибка:



Отже, відносна похибка, зумовлена впливом шуму, не залежить від вимірюваної частоти, а визначається відношенням сигнал/шум.

2.4 Резонансний метод вимірювання частоти


Принцип дії аналогового резонансного частотоміра (рис.12 ґрунтується на порівнянні вимірюваної частоти fx з частотою резонансного контуру fр. Сигнал з частотою fх, яку необхідно виміряти, через взаємно індуктивні елементи подається на коливальний контур LCх. Резонансну частоту контуру можна змінювати, змінюючи ємність конденсатора Сх:



За допомогою індикатора резонансу контур налаштовується у резонанс із вимірюваною частотою fx=fр. Індуктивність L заздалегідь відома із заданою точністю, а тому шкала конденсатора градуюється безпосередньо в одиницях частоти. На високих і надвисоких частотах коливальний контур частотоміра виготовляєтеся у вигляді відрізка коаксіальної лінії або об'ємного резонатора.


Рис.12

2.5 Вимірювання частоти за допомогою осцилографа


Лінійна розгортка. У режимі лінійної розгортки сигнал із частотою, яку необхідно виміряти, подається на вхід каналу вертикального відхилення. За допомогою синхронізації досягають стійкого зображення на екрані осцилографа. Частоту вимірюють, підраховуючи візуально кількість повних коливань за одиницю часу. Період коливань вимірюють також візуально за допомогою шкали, нанесеної на екрані осцилографа.

Якщо осцилограф двоканальний або двопроменевий, то можна виміряти зсув фаз між двома коливаннями однакової частоти, подаючи їх на входи каналів вертикального відхилення.

Зсув фаз можна виміряти також і за допомогою одноканального осцилографа, якщо один сигнал подати на вхід вертикального відхилення, а другий - на вхід зовнішньої синхронізації.

Синусоїдна розгортка. Якщо сигнал з вимірюваною частотою подати на вхід каналу вертикального відхилення осцилографа, а сигнал із відомою зразковою частотою подати на вхід каналу горизонтальної розгортки, то на екрані осцилографа можна отримати так звані фігури Лісажу - складні траєкторії руху електронного променя, вигляд яких залежить від співвідношення частот fx/f0 і від кута зсуву фаз (рис.13).


Рис.13


Циклічна розгортка. У цьому режимі на вхід горизонтального й вертикального каналів подаються сигнали однієї і тієї самої зразкової частоти, відомої із заданою точністю, і зсунуті один відносно одного на π/2. На екрані осцилографа електронний промінь рухатиметься вздовж кола, причому тривалість одного оберту дорівнює періоду зразкового сигналу.

Сигнал із вимірюваною частотою fx подається на модулятор електронно-променевої трубки і таким чином модулюється яскравість зображення - у додатний півперіод зображення яскравіше, а у від'ємний - менш яскраве. Якщо fx>f0, то у зображенні кола на екрані осцилографа з'являються світлі і темні ділянки. Кількість світлих або темних ділянок дорівнює кратності n вимірюваної fx і зразкової f0 частот


n=fx/f0,звідки

fx=nf0.


Пунктирне зображення кола на екрані нерухоме тільки за умови кратності fx/f0, тому візуально домагаються кратності, змінюючи зразкову частоту f0.


III. Техніка безпеки


3.1 Класифікація приміщень за електробезпекою


Згідно правил улаштування електроустаткування ПУЕ приміщення класифікуються на:

·                   сухі (відносна вологість повітря не перевищує 60 %)

·                   вологі (відносна вологість повітря 60-75 %)

·                   гарячі (температура повітря більша 35 С)

·                   запилені (в яких в умовах виробництва виділяється пил в такій кількості, що може осідати на проводах.)

·                   приміщення з хімічно-активним або органічним середовищем, в яких є агресивні пари, рідини, які утворюють відкладення або плісняву.

·                   Приміщення без підвищеної безпеки, в яких створені умови, що створюють підвищену або особливу небезпеку.

·                   Приміщення з підвищеною небезпекою - можливість дотику людини до струмопровідних частин.

·                   Особливо небезпечні приміщення - лазні, металеві гаражі, парники.

3.2 Електрична ізоляція


Ділиться на:

·                   основну

·                   додаткову

·                   подвійну

·                   посилену

Для електротехнічних виробів, в тому числі і електромеханічних приладів встановлено 5 класів захисту:

·                   клас 0 - електроприлади на номінальну напругу більшу 42 В, в яких всі частини досяжні для дотику, відокремлені основною ізоляцією від частин, що знаходяться під напругою, та в яких відсутні пристрій для заземлення.

·                   Клас 01-електроприлади на номінальну напругу більшу 42 В, в яких присутній пристрій для заземлення, розташований з зовнішнього боку приладу.

·                   Клас I - в пристрій для заземлення, розташований всередині приладу.

·                   Клас II - електроприлади на номінальну напругу більше 42 В, в яких всі частини досяжні для дотику, відокремлені подвійною або посиленою ізоляцією від частин, що знаходяться під напругою і відсутній пристрій для заземлення.

·                   Клас III - електроприлади на номінальну напругу до 42 В, у яких немає ні внутрішніх, ні зовнішніх частин, які працюють при більш високій напрузі.


Список рекомендованої літератури


1.                Гурій А.М. Поровознюк Н.І. Електричні і радіотехнічні вимірювання: Посіб. для пед. працівників та учнів проф. - техн. навч. зал. - К.: Навч. Книга, 2002.

2.                Клюев А. С, Пин Л.М., Коломиец Е.И. Наладка средств измерений и систем технологического контроля: Справочное пособие. - М.: Энергоиздат, 1990.

3.                Телешевский Б.Е. Измерения в электро - и радиотехнике. - М.: Высш. шк., 1984.

4.                Телешевский Б.Е. Лабораторные работы по электро - и радиоизмерениям. - М.: Высш. шк., 1984.

5.                Шаповаленко О.Г., Бондар В.М. Основи електричних вимірювань: Підручник. - К.: Либідь, 2002.

6.                Шихин А.Я., Белоусова Я.М., Пухляков Ю. X. и др. Электротехника. - М.: Высш. шк., 1989.

 A


Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.