рефераты скачать

МЕНЮ


Электроснабжение восточной части Феодосийского района электрических сетей с разработкой сетей резервного источника питания потребителей

3.3 Компенсация реактивной мощности


Чтобы уменьшить потери мощности необходимо компенсировать реактивную нагрузку. Найдем необходимую мощность компенсирующего устройства:


Qку = α · PрΣ · (tg φ ср.вз. - tgφс ) , (15)


где α – коэффициент, учитывающий возможность снижения реактивной

мощности естественными способами, принимается равным 0,9 [4];

PрΣ – суммарная активная нагрузка на шинах 0,38кВТП;

tg φ ср.вз – средневзвешенное значение реактивного коэфициента мощности;

tgφс – реактивный коэфициент мощности, который необходимо достич после компенсации tgφс = 0,15 по заданию;


Qку = 0,9 · 439,7· ( 1,05 – 0,15 ) = 356,2 кВАр

tg φ ср.вз. = Q рΣ/PрΣ , (16)

tg φ ср.вз. = 462 / 439,7 = 1,05,


где РрΣ – суммарная расчётная активная нагрузка на шинах 0,38кВ ТП;

QрΣ – суммарная расчётная реактивная нагрузка на шинах 0,38кВ ТП.

По [5, табл. 10.11] выбираем комплектное компенсирующие устройство

УК – 0,38 – 150НУ3 и УК – 0,38 – 220НУ3. Мощность компенсирующего устройства 370 кВАр. Находим уточнённую расчётную нагрузку на шинах 0,38кВ ТП:


Sр = √ Рр∑2 + (Q рΣ - Qку)² (17)

Sр = √ 439,7² + ( 462 – 370)² = 452 кВА


2.4 Выбор трансформаторов питающей подстанции


Выбор числа и мощности трансформаторов для цеховых промышленных предприятий должен быть технически и экономически обоснованным, так как он оказывает существенное влияние на рациональное построение схем промышленного электроснабжения.

Критериями при выборе трансформаторов являются надёжность электроснабжения, условие обеспечения режима работы системы электроснабжения с минимумом потерь электроэнергии.

Учитывая, что электропреимники цеха относятся к потребителям 3-й категории по надёжности электроснабжения, на питающей подстанции можно установить трансформатор.

В соответствии с нагрузкой намечаем 2 варианта мощности трансформаторов:

1вар.- 1х630 кВА

2вар.- 2х250 кВА

Расчёт покажем на примере 2-ого варианта.

1)Определяем коэффициент загрузки трансформаторов:


Кз = Sр/N * Sном.тр, (18)


где N – число устанавливаемых трансформаторов;

Sном.тр – номинальная мощность одного трансформатора


Кз = 452/2 * 250 = 0,9 ,


2)Проверяем трансформаторы по аварийному режиму.

Так как масляные трансформаторы в аварийном режиме допускают перегрузку на 40% по 6 часов в сутки в течении 5 суток, то при отключении одного трансформатора второй с учётом допустимого перегруза пропустит


0,4·250 = 350кВА


Дефицит мощности составит


452-350 = 102кВА,


но т.к. электроприёмники относятся к 3 категории по надёжности электроснабжения, то часть их на время ремонта можно отключить.

3)Проверяем трансформаторы по экономически целесообразному режиму.

Находим стоимость потерь энергии:


Сn=Со∙N∙Tм[∆Рхх+Ки.п∙Iхх∙Sном.тр/100+Кз2∙(∆Ркз+Кип∙Uк∙Sном.тр/100)], (19)


где Со – стоимость одного кВт·ч, на текущий, Со = 0,81 руб/кВт∙ч;

Тм – число использования максимума нагрузки. Тм = 2000ч, [3, с. 38];

∆Рхх – потери мощности холостого хода, ∆Рхх=0,91кВт [5, табл. 27.6];

Ки.п – Коэффициент изменения потерь, Ки.п = 0,03 кВт/кВАр [5];

Iхх – ток холостого хода, Iхх= 2,3% [5, табл. 27.6];

∆Ркз – потери мощности короткого замыкания, ∆Ркз=3,7 [5, табл. 27.6];

Uк – напряжение короткого замыкания, Uк = 6,5% [5, табл. 27.6]

Сn=0,81∙2∙2000[0,74+0,03∙2,3∙250/100+0,9(3,7+0,03∙6,5∙250/100]=8576,6 руб,

Находим капитальные затраты:

К = N · Cс.тр, (20)


где Cс.тр – стоимость одного трансформатора, Cс.тр = [5, табл. 27.6];


Са = Ка · К (21)

Са = 0,12 · 1500 = 180руб


где Ка - коэффициент учитывающий отчисления на амортизацию и эксплуатацию, для трансформаторов Ка = 0,12 [5]

Находим суммарные ежегодные затраты:


Таблица 3












С∑= Сn + Са (22)

С∑= 8576,6 + 180 = 8756,6руб


Для первого варианта расчёт аналогичен, результаты сведены в табл. 3


Наименование параметров

Вариант 1 1 х 630 кВА

Вариант 2 2 х 250 кВА

Кз

0,72

0,9

∆Рх.х, кВт

1,31

0,74

∆Ркз, кВт

7,6

3,7

Uк, %

5,5

6,5

Iхх, %

2

2,3

Тм , ч

2000

2000

Со, руб/кВт∙ч

0,81

0,81

Сn, руб

8557,5

8576,6

К, руб

1600

1500

Ка, руб

0,12

0,12

Са, руб

192

180

С∑, руб

8749,5

8756,6

(8756 –8749,5)*100/8749,5 = 0,08%,

то варианты считаются равноценными, поэтому выбираем вариант с наименьшими капитальными затратами т. е. 2 х 250 кВА.


3.5 Выбор места расположения питающей подстанции


Место расположения ШР определяется по картограммам нагрузок в зависимости от мощности, запитанных от него электроприёмников.

Распределительные шкафы и цеховую трансформаторную подстанцию целесообразно устанавливать в центре электрических нагрузок (ЦЭН). Координаты ЦЭН определяют по формуле:


Хцэн = ΣХiРi/ ΣРном.i , (23)

Yцэн = ΣYiРi/ ΣРном.i , (24)


где Хi - координата i – го электроприёмника по оси абсцисс, м;

Yi – координата i – го электроприёмника по оси ординат, м;

Рном.i – номинальная мощность i – го электроприёмника, кВт.

Для трансформаторной подстанции берутся координаты всех ШР. Расчёты рассмотрим на примере ШР-1:

Покажем расчёт на примере ШР-1


Хцэн = (1,5 · 11 + 9 · 5 + (12,5 · 5) · 4 + 17 · 5 + 20 · 5) /46 = 496,5/46 = 11м ,

Yцэн = (50 · 11 + (50 · 5) · 2 + 45 · 5 + 42 · 5 + 39 · 5 + 36 · 5 + 45 · 5)/46 = 2085/46 = 45,5м,


Для остальных шкафов распределительных и подстанций расчёт аналогичен, результаты сведены в табл. 4

Таблица 4.

Номер ШР

Расчётные координаты (X;Y)

Координаты установки (X;Y)

ШР-1

(11;45,5)

(11;51)

ШР-2

(25;41)

(25;51)

ШР-3

(32;22)

(35,5;22)

ШР-4

(15;8)

(15;1)

ТП

(19;7)

Вне цеха


2.6 Расчёт сети 0,38кВ


Выбор аппаратов защиты

Выбор сечения проводника для отдельного электроприемника покажем на примере вентилятора 10/1. Сечение питающего проводника выбираем по следующим условиям:

По допустимому нагреву


Iдоп ≥ Iр , (25)


где Iдоп – допустимый ток проводника, определяется сечением токоведущей жилы, ее материалом, количеством жил, типом изоляции и условиями прокладки, А;


Iр =Рном/√3 · U ·cosφ, (26)

Iр =11/√3 · 0,38 · = 21А,


Данному току соответствует провод АПВ сечением 4 мм² с Iдоп = 28 А [7, табл. 1.3.5]

Проверяем выбранное сечение по допустимым потерям напряжения:


∆Uдоп ≥ ∆Uр (27)


где ∆Uдоп – допустимые потери напряжения, ∆Uдоп = 5%

∆Uр – расчётные потери напряжения, %


∆Uр% = 105 · Рном · L (ro + xo tg φ)/ U ном² (28)


где L – длина проводника, км;

ro - активное сопротивление 1км проводника, ro = 3,12Ом/км, [8, табл. 2-5];

xo - реактивное сопротивление 1км проводника, xo = 3,12Ом/км, [8, табл. 2-5];


∆Uр%= 105 · 11 · 0,012 · (3,12 + 0,073 · 0,75) / 380² = 0,28 %


т.к. и ∆Uр < ∆Uдоп , то сечение 4 мм² соответствует допустимым потерям напряжения.

В качестве аппарата защиты выбираем предохранитель по следующим условиям:


Uном.пр > Uном , (29)

Iном.пр > Iр , (30)

Iпл.вс > Iпик / α, (31)


где Uном.пр – номинальное напряжение предохранителя, В;

Iном.пр - номинальный ток предохранителя, А;

Iпл.вс – номинальный ток плавкой вставки, А;

Iпик – пиковый ток, А;

α – коэффициент, учитывающий условия пуска, α = 2,5 [3, табл. 6.3]


Iпик = Кп ∙ Iр , (32)

где Кп – кратность пускового тока по отношению к току нормального режима, Кп = 5 [3];


Iпик = 21∙5 = 105А

Uном.пр > 380В , (33)

Iном.пр > 21А , (34)

Iпл.вс > 105/2,5 = 42А , (35)


Выбираем предохранитель ПН-2 Iном=100А Iпл.вс=50А.

Проверяем выбранный провод на соответствие выбранному предохранителю по условию:


Iдоп ≥ Кз ∙ Iз , (36)


где Кз – кратность допустимого тока проводника по отношению к току срабатывания аппарата защиты, Кз=1 [3, табл. 6.5];

Iз – ток срабатывания защиты, Iз=50А.

т.к. 28 < 1 ∙ 50, то провод не соответствует аппарату защиты поэтому выбираем провод АПВ-16мм2, Iдоп = 60А [7, табл. 1.3.5]

Расчёт для группы электроприёмников покажем на примере ШР-1.

В соответствии с условием (24) Iр = 34,4А. Выбираем провод АПВ-10мм2 [7, табл. 1.3.5].

По формуле (28) находим:


∆Uр%= 105 · 17,8 · 0,05 · (3,12 + 0,073 · 0,75) / 380² = 2 %,


Провод АПВ-10мм2 соответствует допустимым потерям напряжения, т.к. ∆Uр=2%≤∆Uдоп=5% [7]

В качестве аппарата устанавливаем предохранитель

Находим пиковый ток:

Iпик = Iр – Ки ∙ Iнб + Iпуск.нб (37)


где Iпик – пусковой ток наибольшего электроприёмника


Iпик = 34,4 – 0,65 ∙ 20,8 + 140 = 124,9


По условиям (29), (30), (31) выбираем предохранитель ПН-2 Iном.пр =100А , Iпл.вс =50А,

Проверяем предохранитель по селективности, однолинейная схема ШР-1 дона на рис. 2



Рис. 2


Предохранитель на вводе не селективен, поэтому выбираем предохранитель ПН-2 Iном.пр =100А , Iпл.вс =80А

Проверяем выбранный провод на соответствие выбранному предохранителю по условию (36), т.к. 34,4 ≤ 1 ∙ 80, то провод не соответствует аппарату защиты, поэтому находим, что данному предохранителю соответствует провод АПВ-35мм2 [7, табл. 1.3.5].

Для остальных электроприемников и шкафов распределительных расчёт аналогичен, результаты сведены в табл. 5


Таблица 5

№ линии

Трасса

Проводник

Предохранитель

Откуда

Куда

Марка

Сечение мм²

Кол-во жил

Длина м

Тип

Iном А

Iпл. вс А

1

ТП 35/6

ТП 6/0,4 ввод 1

ААБ

3*35

150




2

ТП 35/6

ТП 6/0,4 ввод 2

ААБ

3*35

150




3

ТП 6/0,4 Секция1

ШР-1

АПВ

35

4

55

ПН-2

100

80

4

ТП 6/0,4 Секция1

ШР-2

АПВ

70

4

65

ПН-2

250

150

5

ТП 6/0,4 Секция2

ШР-3

СБ

3*185+1*95

85

ПН-2

400

350

6

ТП 6/0,4 Секция2

ШР-4

СБ

2(3*185+ 1*95)

55

ПН-2

600

600

7

ШР-1

10/1

АПВ

16

4

15

ПН-2

100

50

8

ШР-1

6/1

АПВ

2,5

4

10

ПН-2

100

40

9

ШР-1

6/2

АПВ

2,5

4

15

ПН-2

100

40

10

ШР-1

6/3

АПВ

2,5

4

20

ПН-2

100

40

11

ШР-1

6/4

АПВ

2,5

4

25

ПН-2

100

40

12

ШР-1

6/5

АПВ

2,5

4

10

ПН-2

100

40

13

ШР-1

11/1

АПВ

2,5

4

5

ПР-2

15

15

14

ШР-1

11/2

АПВ

2,5

4

5

ПН-2

15

15

15

ШР-2

8/1

АПВ

10

4

10

ПН-2

100

40

16

ШР-2

8/2

АПВ

10

4

15

ПН-2

100

40

17

ШР-2

8/3

АПВ

10

4

20

ПН-2

100

40

18

ШР-2

8/4

АПВ

10

4

25

ПН-2

100

40

19

ШР-2

6/6

АПВ

2,5

4

25

ПН-2

100

40

20

ШР-2

10/2

АПВ

16

4

10

ПН-2

100

50

21

ШР-2

6/7

АПВ

2,5

4

25

ПН-2

100

40

22

ШР-2

6/8

АПВ

2,5

4

25

ПН-2

100

40

23

ШР-3

4

АПВ

50

4

10

ПН-2

250

250

24

ШР-3

8/5

АПВ

10

4

25

ПН-2

100

40

25

ШР-3

10/3

АПВ

16

4

25

ПН-2

100

50

26

ШР-3

14/1

АПВ

10

4

15

ПН-2

100

30

27

ШР-3

14/2

АПВ

10

4

20

ПН-2

100

30

28

ШР-3

14/3

АПВ

10

4

25

ПН-2

100

30

29

ШР-3

14/4

АПВ

10

4

25

ПН-2

100

30

30

ШР-4

3/1

АПВ

120

4

15

ПН-2

400

400

31

ШР-4

3/2

АВВГ

120

4

10

ПН-2

400

400

32

ШР-4

3/3

АВВГ

120

4

10

ПН-2

400

400

33

ШР-4

10/4

АПВ

16

4

15

ПН-2

100

50

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.