рефераты скачать

МЕНЮ


Электроснабжение и релейная защита нефтеперекачивающей станции


II РАЗРАБОТКА СХЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ НПС


Система электроснабжения должна обеспечивать стабильную и непрерывную подачу электроэнергии к НПС "Суторминская". Так как НПС является потребителем I категории [3], то ее питание должно осуществляться от двух независимых, взаиморезервируемых источников.

Исходными данными при разработке проекта электроснабжения объектов нефтяной и газовой промышленности являются величина электрической нагрузки потребителей, а также место расположения ближайших источников электроэнергии и их параметры. Такими источниками, как правило являются главные понижающие подстанции (ГПП) с двумя трансформаторами.

Основные условия проектирования рациональной схемы электроснабжения – надежность, экономичность и качество электроэнергии у потребителя. Для крупных предприятий наиболее надежной и экономичной является система электроснабжения с применением глубоких вводов, при которой сети 6-110 кВ максимально приближены к потребителям электроэнергии.

Система электроснабжения строится таким образом, чтобы все её элементы постоянно находились под нагрузкой, т.е. чтобы не было холодного резерва. Вместе с тем параллельно установленные трансформаторы и параллельные линии электропередачи должны работать раздельно, так как при этом снижаются токи короткого замыкания и удешевляются схемы коммутации и схемы релейных защит.

Согласно ПУЭ, потребители относятся к первой категории в отношении бесперебойности питания.

Это предъявляет к системе электроснабжения следующие требования:

·   Электроснабжение должно осуществляться от двух независимых источников питания по двум линиям;

·   Питание потребителей нефтеперекачивающей станции должно производится от двух трансформаторной подстанции, трансформаторы которой выбираются с учетом взаимного резервирования;

·   Перерыв в электроснабжении возможен лишь на время действия автоматики (АПВ и АВР).

 Схема системы электроснабжения нефтеперекачивающей станции, удовлетворяющая требованиям изложенным выше, представлена на листе 2 графической части.


2.2 Схема электроснабжения НПС

Рис. 2.1. Схема электроснабжения НПС


 На рис. 2.1. в соответствии с заданием приведена схема электроснабжения НПС для перекачки нефти по трубопроводу.

 Трансформаторы Т1 и Т2 35/10 кВ в нормальном режиме работают раздельно, каждый на свою секцию шин КРУ.

Автоматическое включение резерва на стороне низшего напряжения производится с помощью секционного выключателя. (Q4).

 Питание подводится по двум одноцепным взаиморезервируемым ЛЭП 35кВ. Питание высоковольтных двигателей и трасформаторов 10/0,4кВ производится от двух, взаиморезервируемых секций шин КРУ (рис. 2.1).

 Питание цепей защиты и управления электродвигателями и всего вспомогательного оборудования НПС на напряжение 220/380 В, осуществляется от трансформаторов собственных нужд, Т3 и Т4.

2.3 Расчет электрических нагрузок на стороне высшего напряжения трансформаторной подстанции 35/10 кВ при НПС

 Для расчета электрических нагрузок на стороне ВН, воспользуемся методикой, разработанной институтом Гипротюменьнефтегаз. В основе метода используется модель распределения в виде двухступенчатой кратчайшей функции.

Расчетная активная мощность высоковольтных двигателей по этому методу определяется следующим образом:


  при С £ 0,75 М (2.4.2)

  при С > 0,75 М (2.4.3)

где  (2.4.4)

  (2.4.5)

где Кв - коэффициент включения, Кв = 0,84;

Кз - коэффициент загрузки двигателей, Кз = 0,76 – 0,84;

Рном-номинальная активная мощность единичного электродвигателя.

Примем Кз = 0,84, т. е. его максимальное значение. Тогда средняя мощность определится:



Максимальная мощность:



Разделим С на М и получим:


С/М = 6,42 / 9,1 = 0,70 < 0,75


 Следовательно, расчетную активную мощность высоковольтных электродвигателей определим по формуле:



=0,9 соответственно заданию. Коэффициент мощности является опережающим, поэтому реактивная мощность принимается со знаком минус.

Реактивная мощность высоковольтных электродвигателей НПС равна:


  (2.4.6)


Полная мощность высоковольтных электродвигателей составит:


  (2.4.7)

2.4. Выбор числа и мощности трансформаторов

 

 Число трансформаторов выбирается из соображений надежности в зависимости от категории электроснабжения потребителей.

Категорию проектируемого объекта по надежности электроснабжения принимают в соответствии с ПУЭ [13].

К первой категории относятся потребители, отключение электроснабжения которых влечет за собой опасность для жизни людей, ущерб народному хозяйству, повреждение оборудования, нарушение сложного технологического процесса.

К второй категории - массовый срыв выпуска продукции, простой рабочих, механизмов, промышленного транспорта, нарушение нормальной деятельности значительного количества городских жителей.

К третьей категории - все остальные потребители. Для потребителей третьей категории рекомендуется применять подстанцию с одним трансформатором.

Электроприёмники установок по добыче, подготовке и транспортировке нефти и газа практически все относятся к первой категории надежности. Для электроснабжения потребителей первой категории надежности должны быть предусмотрены два независимых источника электроснабжения.

Согласно руководящим документам для большинства объектов нефтяной и газовой промышленности в районах Западной Сибири с учетом сложности размещения и эксплуатации подстанций рекомендовано выбор единичной мощности трансформаторов и автотрансформаторов двухтрасформаторных подстанций производить из условия 100% резервирования электроснабжения потребителей. Сюда отнесены объекты нефтедобычи, переработки попутного газа, компрессорные станции магистральных газопроводов с газотурбинными приводными агрегатами, нефтеперекачивающие станции магистральных нефтепроводов.

 Произведём выбор силовых трансформаторов. Выбираем силовые трансформаторы из условия:



где - полная максимальная нагрузка подстанции;

 Выберем двухобмоточные масляные трансформаторы типа ТМ 10000/35, технические данные которых сведены в табл. 2.4

 

Таблица 2.4

 Параметры трансформаторов ТМ 10000/35

Параметры

Единицы измерения

Данные

Номинальная мощность, Sном

10000

Номинальное напряжение обмотки ВН

кВ

35

Номинальное напряжение обмотки НН

кВ

10

Потери холостого хода, Рх

кВт

2,75

Потери короткого замыкания, Рк

кВт

18,3

Напряжение короткого замыкания, Uк

%

6,5

Ток холостого хода, Iх

%

1,5


 Проверим, подходят ли выбранные трансформаторы с учетом потерь. Активные потери составляют 2 % от номинальной мощности. Реактивные потери составляют 10 % от номинальной мощности.



 Полная мощность, с учетом потерь, в трансформаторах составит:


 Следовательно, данный тип трансформаторов удовлетворяет нашим требованиям.

Коэффициент загрузки трансформаторов:


  (2.5.10)


Для I категории , следовательно,  соответствует.

III РАСЧЁТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ

3.1. Расчет токов короткого замыкания в относительных единицах


 Электрооборудование, устанавливаемое в системах электроснабжения должно быть устойчивым к токам КЗ и выбираться с учетом этих токов.

На рис. 3.2 приведена расчетная схема, а на рис. 3.3 схема замещения, построенная в соответствии со схемой на рис. 2.1.

В нормальном режиме все секционные вакуумные выключатели находятся в отключенном состоянии, силовые трансформаторы работают раздельно на отдельные секции шин.

Наиболее тяжелый режим работы может наступить при КЗ в момент перевода нагрузки с одного силового трансформатора на другой, т. е. когда секционный выключатель Q4 включен (рис. 3.2). Этот режим принят за расчетный.

 Преобразовывать сложные схемы при помощи именованных единиц неудобно. В этом случае все величины выражают в относительных единицах, сравнивая их с базисными. В качестве базисных величин принимают базисную мощность Sб и базисное напряжение Uб. За базисную мощность принимают суммарную мощность генераторов, мощность трансформатора, а чаще число, кратное 10, например 100 МВ×А. За базисную мощность принимаем значение100 МВ×А.

 В качестве базисного напряжения принимаем напряжение высокой ступени 35кВ - Uб1=37,5кВ и Uб2=10,5кВ - базисное напряжение на низкой стороне 10кВ. Составим расчётную схему и схему замещения цепи короткого замыкания. Ниже приведена схема электроснабжения НПС (рис. 3.2).

Рис. 3.2. Расчетная исходная схема


Cхема замещения имеет следующий вид:


 

Рис. 3.3. Схема замещения

Т.к. точка КЗ значительно удалена от источника питания и его мощность велика, по сравнению с суммарной мощностью электроприемников, то периодическая составляющая тока КЗ:


 ; (3.1.11)


 Определим базисные токи (Iб) для каждой ступени трансформации:


 -базисный ток на высокой стороне (3.1.12)


 -базисный ток на низкой стороне (3.1.13)


Найдем сопротивления отдельных элементов сети в относительных единицах и подсчитаем суммарное эквивалентное сопротивление схемы замещения от источника до точки короткого замыкания:

а) для системы при заданной мощности КЗ:


 ; (3.10)

  (3.1.14)


б) для ВЛ:

 , (3.1.15)

где , , ;

 , (3.1.16)

где , , ;


в) для двухобмоточных трансформаторов Т1,Т2 (35/10кВ):


  (3.1.17)


г) для двухобмоточных трансформаторов Т3,Т4 (10/0,4кВ):


  (3.1.18)


д) для двигателей основных насосов (СТДП-2500-2УХЛ4):


  (3.1.19)


где -полная мощность СД;


  (3.1.20)

– сверхпереходное сопротивление, =0,2;


е) для двигателей подпорных насосов (ВАОВ-630 L-4У1):


  (3.1.21)

где -полная мощность ВАОВ;


  (3.1.22)

– сверхпереходное сопротивление, =0,2;


На рис.3.4 приведена преобразованная схема замещения.

Рис. 3.4. Преобразованная схема замещения


Параметры преобразованной схемы замещения, определены следующим образом:


;

; ;

;

;


Суммарное приведенное индуктивное сопротивление от источника питания до точки короткого замыкания К-1:


  (3.1.23)


Для того чтобы определить нужно ли учитывать активное сопротивление в лини проверим, выполняется ли условие < 0,33 [3]


  (3.1.24)

0,085>0,034


Видно, что условие не выполняется, значит активное сопротивление следует учесть.



 Определим периодическую составляющую тока К-1:



  (3.1.25)


Для выбора и проверки электрооборудования по условию электродинамической стойкости необходимо знать ударный ток КЗ (iуд):

Ударный ток КЗ в точке К-1:


  (3.1.26)


где куд – ударный коэффициент;

Ударный коэффициент определим по графику


 [3], (3.1.27)


где  и -суммарные сопротивления от источника до точки КЗ.

  данному значению отношения соответствует значение ;


Мощность КЗ в точке К-1:


  (3.1.28)


 Суммарное эквивалентное сопротивление схемы замещения от источника до точки короткого замыкания К-2:


 ; (3.1.29)


 Для того чтобы определить нужно ли учитывать активное сопротивление в лини проверим, выполняется ли условие:


< 0,33 [3]

  (3.1.30)

0,085<0,14


Видно, что условие выполняется, значит активным сопротивлением можно пренебречь.


  (3.1.31)


 Определим периодическую составляющую тока К-2:


 ; (3.1.32)

Для того, чтобы определить периодическую составляющую тока К-2, следует учесть “потпитку” от электродвигателей.


  (3.1.33)


Периодическая составляющая тока КЗ от источника питания:


  (3.1.34)


Периодическая составляющая тока КЗ от электродвигателей:


  (3.1.35)


Результирующий ток КЗ в точке К-2:


 


Определим ударный ток КЗ в точке К-2:


 ; (3.1.36)


Ударный коэффициент для определения тока КЗ в точке К-2 определим аналогично, по графику


 [3];

 

данному значению отношения соответствует значение ;

Ударный ток КЗ от энергосистемы в точке К-2:

 

 (3.1.37)


Ударный ток КЗ от электродвигателей:


  (3.1.38)


Результирующий ударный ток КЗ в точке К-2:


 кА


Мощность КЗ в точке К-2:


 ; (3.1.40)


Результирующая мощность в точке К-2:


 


 В качестве минимального тока КЗ, который необходим для проверки чувствительности релейных защит, используют ток двухфазного КЗ в наиболее удаленной точке. Минимальное значение тока КЗ можно определить по формуле:

  (3.1.41)

  (3.1.42)


Результаты расчета токов КЗ сведены в табл. 3.1.8.


Таблица 3.1.8

Результаты расчета токов КЗ

Точка КЗ

Ik(3), кА

iуд, кА

Ik(2), кА

К-1

 28,3

 44,02

 24,5

1838,13

К-2

45,32

81,38

39,24

939,14


IV ВЫБОР ВЫСОКОВОЛЬТНОГО ОБОРУДОВАНИЯ И ТИПОВЫХ ЯЧЕЕК КРУ-10 кВ


4.1. Выбор сечения и марки кабелей


Сечение кабелей выбирают по техническим и экономическим соображениям.

Произведем выбор сечений по расчетным токам. За расчетные токи потребителей примем их номинальные значения.

Для основных двигателей номинальный ток определится:


  (4.13)


где Рном – номинальная мощность электродвигателя, кВт;

Uном – номинальное напряжение, кВ;

сos φ – коэффициент мощности электродвигателя.

 


Для подпорных двигателей номинальный ток определится:


 


Для трансформаторов типа ТМ 10000/35 номинальный ток определится:

 , (4.14)


где Sном.т – номинальная мощность каждого из трансформаторов, кВ*А;

 Uном – номинальное напряжение; 110 кВ.

 


Для параллельно работающих линий, питающих ЗРУ-10кВ в качестве расчетного тока принят ток послеаварийного режима, когда одна питаю-щая линия вышла из строя. Расчетный ток для этого случая определим по величине расчетной мощности:


  (4.15)


где S.р – полная расчетная мощность электродвигателей, кВ*А;

 Uном – номинальное напряжение, 10кВ.



Результаты расчета сведены в табл. 4.6.


 Таблица 4.6

Выбор сечений и марки кабелей

Наименование потребителей

Основной

электродвигатель

Подпорный

электродвигатель

ЗРУ-10 кВ

Трансформатор

ТМ 10000/35

Расчетная мощность, кВт

2500

800

7260

25000

Номинальный ток, А

152,74

51,151

419,16

164,9

Длительно допустимый ток, А

270

60

740


300

Сечение жилы кабеля, мм2

185

16

480

150

Принятая марка кабеля

СБ2лГ 3х120

СБ2лГ

3х95

ШАТ 80х6

АС-70


Условие выбора сечения жил кабеля по допустимому нагреву при нормальных условиях прокладки: номинальный ток должен быть меньше либо равен допустимому току.


 . (4.16)


Проанализировав данные табл. 4.2 можно сделать вывод, что выбранные сечения удовлетворяют нашим условиям.


4.2 Выбор ячеек КРУ


В качестве распределительного устройства 10 кВ применим закрытое распределительное устройство (ЗРУ). ЗРУ состоит из отдельных ячеек различного назначения.

Для комплектования ЗРУ-10 кВ выберем малогабаритные ячейки КРУ серии К-104 Кушвинского электромеханического завода. Данные ячейки отвечают современным требованиям эксплуатации, имеют двухсторонний коридор обслуживания, выкатные тележки с вакуумными выключателями, безопасный доступ к любому элементу КРУ. Релейный и кабельный отсеки отделены от отсека коммутационных аппаратов металлическими перегородками, все коммутации производятся только при закрытой наружной двери, имеются функциональные блокировки.

В состав КРУ серии К-104 входят вакуумные выключатели с электромагнитным приводом, трансформаторы тока, трансформаторы напряжения, предохранители, разъединитель с заземляющими ножами, релейный шкаф с аппаратурой, клапаны сброса давления в сочетании с датчиками дуговой защиты.

КРУ серии К-104 предназначены для установки в закрытых помещениях с естественной вентиляцией без искусственного регулирования климатических условий. Обслуживающая среда должна быть невзрывоопасной, не содержать агрессивных газов и испарений, химических отложений, не насыщенной токопроводящей пылью и водяными парами.

 

4.3. Выбор шин


В качестве сборных шин выбираем алюминиевые шины прямоугольного сечения размером 80х6 мм. Длительно допустимый ток при одной полосе на фазу составляет Iдоп = 740А. Условие выбора:


 ; (4.3.50)

 


 Проверим шины на электродинамическую стойкость к токам КЗ.

Шину, закрепленную на изоляторах можно рассматривать как многопролетную балку.

 Наибольшее напряжение в металле при изгибе:


 , (4.3.51)


где М – изгибающий момент, создаваемый ударным током КЗ, Н×м;

W – момент сопротивления, м3.

Изгибающий момент для равномерно нагруженной многопролетной балки равен:


 , (4.3.52)


где F-сила взаимодействия между проводниками при протекании по ним ударного тока КЗ, Н;

– расстояние между опорными изоляторами,


 , (4.3.53)


где – расстояние между токоведущими шинами, = 0,35 м;

 – коэффициент формы, =1,1.

Момент сопротивления:


 , (4.3.54)


где b,h – соответственно узкая и широкая стороны шины, м.

Тогда наибольшее напряжение в металле при изгибе:



Допустимое напряжение при изгибе для алюминиевых шин 70 МПа.

Следовательно выбранные шины удовлетворяют условиям электродинамической стойкости.

Для проверки возможности возникновения механического резонанса в шинах определим частоту свободных колебаний шин:


  (4.3.55)


где – пролет шины, =1,1 м;

 – модуль упругости материала шин, для алюминия =7,2×1010 Н/м2;

 – масса единицы длины шины,  = 0,666 кг/м;

Страницы: 1, 2, 3, 4, 5


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.