рефераты скачать

МЕНЮ


Электрификация животноводческой фермы крупного рогатого скота на 2700 голов ЗАО "Агрофирма Луговская" Тюменского района Тюменской области с разработкой системы горячего и холодного водоснабжения


Uн. а. =500В≥Uн. у. =380В, Iн. а=50А≥Iрасч=35А

Iн. р=40А≥Кн. р. ·Iрасч=1,1·35=38,5А (3.130)

Iотс=175А≥Кн.э. ·Imax=1,25·71,4=89,2А

Все условия выполняются, значит, окончательно на группах принимаем выбранный ранее автоматический выключатель.

Проверка выбранного автоматического выключателя на вводе.


Uн. а. =500В≥Uн. у. =380В

Iн. а. =160А≥Iрасч=135,8А

Iн. р. =150А≥Кн. р. ·Iрасч=1,1·135,8=149,3А (3.131)

Iотс. =480А≥Кн.э. ·Imax=1,25·216,8=271А


Все условия выполняются значит принимаем выбранный ранее на вводе автоматический выключатель серии ВА 51-33 а также окончательно принимаем силовой щит серии ПР8501 с автоматом на вводе ВА51-33 и с 4 автоматами на отходящих группах серии ВА51-31.


Таблица 3.12.Характеристика автоматических выключателей силового щита.

Тип автомата

Номинальный

ток выключателя, А

Уставка мгновенного

срабатывания

электромагнитного

расцепителя, А

Номинальный ток

расцепителя, А

ВА51-31

50

175

40

ВА51-33

160

480

150


Установленная мощность одного комплекса.


Руст=Рж+Рм=105+35=140 кВт (3.132)


Учитывая, что в отделении 8 комплексов то установленная мощность всего комплекса


140 кВт х 8 = 1120 кВт


4. Составление графиков нагрузки


Графики нагрузки составляются для того чтобы наглядно иметь представление о пиках нагрузки, а также чтобы подсчитать потребление и стоимость годовой потребленной электроэнергии. При составлении графиков нагрузок будет учитываться весь животноводческий комплекс, включая молочный блок. Графики нагрузки будут составляться для летнего и зимнего периодов.

Для летнего периода будем учитывать следующие условия: вентиляция в летний период осуществляется за счет естественного проветривания и поэтому расход энергии на вентилятор и калорифер, будет равняться нулю, т.к в летнее время коровы пасутся на пастбищах то уборка навоза, будет производиться 1 раз в сутки. Для составления графиков нагрузок заносим время работы технологического оборудования в таблицу.


Таблица 4.1. Интервалы и время работы технологического оборудования в летний период.

Марка

оборудования.

Установленная

мощность, кВт

Время

работы

Интервалы времени

Работы

ТСН-160

22

0,6

 с 8 до 8.36

АДМ-8/200

8

4,2

 с 7 до 9.06 с 19 до 21.06

ТО2

8

6,5

с 7.30 до 10.55 с 19.30 до 22.55

МХУ-8С

6,8

6,5

с 7.30 до 10.55 с 19.30 до 22.55


Освещение в летнее время почти не используется за исключением освещения во время вечернего доения и дежурного освещения. Суммарная мощность дежурного освещения Рд=1,6 кВт. Также при составлении графиков нагрузки будем считать, что в дневное время помимо

производственной нагрузки включается дополнительная нагрузка затрачиваемая на бытовые нужды которая примерно составляет порядка 5 кВт. Т.к. молоко реализуется предприятием в дневное время, а доение происходит утром и вечером, то будем считать, что в ночное время будет помимо освещения включена холодильная машина с интервалом работы 25 минут в час.

В зимнее время интервалы работы технологического оборудования аналогично летнему периоду за исключением навозоуборочных транспортеров, работа которых составляет 4 раза в сутки. Также в зимнее время приточный воздух с улицы подается вентилятором на калорифер где он прогревается и затем подается в верхнею зону помещений, т.к из проведенных ранее расчетах требуемая подача воздуха равнялась 12000 м³, а подача воздуха выбранных вентиляторов в сумме равняется 12000 м³, то будем считать что вентиляционная система в зимнее время будет постоянно работать.


Таблица 4.2. Интервалы и время работы технологического оборудования в зимний период.

Марка

оборудования

Установленная

мощность, кВт

Время

работы, ч

Интервалы времени работы

ТСН-160

22

1,2

с 8 до 8.18: с 11 до 11.18

с 16 до 16.18: с 20 до 20.18

АДМ-8

8

4,2

с 7 до 9.06: с 19 до 22.06

ТО2

8

6,5

с 7.30 до 10.55: с 19.30 до 22.55

МХУ-8С

6,8

6,5

с 7.30 до 10.55: с 19.30 до 22.55


Также сводим в таблицу время работы освещения в летний и зимний период.


Таблица 4.3. Интервалы и время работы осветительной сети.

Время года.

Установленная

мощность осветительной

сети

Время работы, ч

Интервалы времени

работы осветительной

сети.

Летнее

18

1,1

с 21.00 до 22.10

Зимнее

18

7,15

с 7.00 до 8.30: с 16.30 до 22.15


Дежурное освещение в летний и зимний период включено постоянно, и его мощность составляет 1,6 кВт. Графики нагрузки в зимний и летний период приведены ниже.

Определяем годовое потребление электроэнергии для технологического оборудования.


Wгод=Р· ( (t·165) + (t·200)) (4.1)


где, Р - номинальная мощность установки, кВт

t - время работы установки, ч

165-количество летних дней

200-количество зимних дней.

Годовое потребление электроэнергии для навозоуборочного транспортера.


Wгод=22· ( (0,6·165) + (1,2·200)) =7458 кВт·ч (4.2)


Годовое потребление энергии доильной установкой.


Wгод=8· ( (4,2·165) + (4,2·200)) =12264 кВт·ч (4.3)


Годовое потребление электроэнергии танком охладителем.


Wгод=8· ( (6,5·165) + (6,5·200)) =18980 кВт·ч


Годовое потребление электроэнергии холодильной установкой.


Wгод=6,8· ( (10,2·165) + (10,2·200)) =25316,4 кВт·ч (4.4)


Определяем годовое потребление электроэнергии на вентиляцию воздуха.

Wгод=54· (24·200) =259200 кВт·ч (4.5)


Годовое потребление электроэнергии на освещение.

Потребление электроэнергии на дежурное освещение.


Wгод=1,6· (24·365) =14016 кВт·ч (4.6)


Годовое потребление электроэнергии на рабочее освещение.


Wгод=18· ( (1,1·165) + (7,15·165)) =29007 кВт·ч (4.7)


Годовое потребление на различные вспомогательные нужды.


Wгод=5· (8·264) =10560 кВт·ч (4.8)


где, 264 - среднее количество рабочих дней в году.

Общее потребление электроэнергии.


Wобщ=ΣРWгод=7458+12264+18980+25316,4+259200+14016+29007+10560=376801 кВт·ч (4.9)


Стоимость потребленной электроэнергии.


СтW=Wобщ·Ц=376801·1,3=489841,3 руб (4.10)


где, Ц - цена одного кВт·ч


5. Выбор Т.П. Расчет наружных сетей


Расчет перспективных нагрузок.

Для проектирования подстанции необходимо знать нагрузки. Расчетные нагрузки линий 10 кВ и трансформаторных подстанций 10/0,4 определяется суммированием максимальных нагрузок на вводе к потребителям с учетом коэффициента одновременности.


Таблица 5.1. Установленная мощность потребителей.

Наименование потребителя

Установленная

мощность, кВт

Коэффициент

одновременности

Уличное освещение

12

1

Гараж

15

0,6

Вентсанпропускник

10

0,8

Вентпункт

4,7

0,8

насосная

16,5

1

Резервная артскважина

2,7

0,3

Родильное отделение

50

0,9

Доильное отделение

35

0,8

Водоподъёмная установка

3

1


Определяем установленную мощность потребителей с учетом коэффициента одновременности в дневной максимум.


Р=Руст·Ко·Кд (5.1)


где, Руст - установленная мощность потребителя, кВт

Ко - коэффициент одновременности

Кд - коэффициент

Мощность гаража


Рг=15·0,6·0,8=7,2 кВт

Мощность вентсанпропускника


Рв=10·0,8·0,8=6,4 кВт


Мощность ветпункта


Рве=4,7·0,8·0,8=3 кВт


Мощность артскважины


Ра=16,5·1·0,8=13,2 кВт


Мощность резервной артскважины


Рра=2,7·0,3·0,8=0,6 кВт


Мощность родильного отделения


Рр=50·0,9·0,8=36 кВт


Мощность животноводческого комплекса N1


Рж=52,5·0,7·0.8=37 кВт


Мощность животноводческого комплекса N2


Рж2=52,5·0,7·0,8=37 кВт


Мощность молочного блока

Рм=35·0,8·0,8=22,4 кВт


Мощность котельной.


Рк=30·0,9·0,8=21,6 кВт


Суммарная нагрузка в дневной максимум.


Рд=ΣР=7,2+6,4+3+13,2+0,6+36+37+37+22,4+21,6=184 кВт (5.2)


где, ΣР - сумма мощностей

Полная мощность в дневной максимум


S=Рд/cosφ=184/0,8=230 кВа (5.3)


Определяем активную мощность потребителей в вечерний максимум.


Рв=Руст·Ко·Кв (5.4)


где, Кв - коэффициент вечернего максимума Кв=0,7

Уличное освещение


Ру=12·1·0,7=8,4 кВт


Мощность артскважины


Ра=16,5·1·0,7=11,5 кВт


Мощность резервной артскважины

Рра=2,7·0,3·0,8=0,6 кВт


Мощность родильного отделения


Рр=50·0,9·0,7=31,5 кВт


Мощность животноводческого комплекса


Рж2=52,5·0,7·0,7=32,4 кВт


Мощность молочного блока


Рм=35·0,8·0,7=19,6 кВт


Мощность котельной


Рк=30·0,9·0,7=18,9 кВт


Суммарная нагрузка в вечерний максимум.


Рв=8,4+11,5+0,6+31,5+32,4+32,4+19,6+18,9=145,3 кВт


Полная вечерняя нагрузка.


Sв=Рв/cosφ=145,3/0,8=181,6 кВа (5.5)


Силовой трансформатор выбираем с учетом максимальной нагрузки потребителя, максимальная нагрузка вошла в дневной максимум, и составила 230 кВа Рд=230 кВа>Рв=181,6 кВа, поэтому принимаем силовой трансформатор с учетом дневного максимума.

Трансформатор выбираем согласно соотношению.


Sн≥Sрасч (5.6)


где, Sн - номинальная мощность трансформатора, кВа

Sрасч - расчетная мощность, кВа

Выбираем три силовые трансформаторы ТМ-630 с Sн=630 кВа


Sн= (2х630) кВа≥Sрасч=1260 кВа


условие выполняется, значит, трансформатор выбран верно.


Таблица 5.2. Технические характеристики силового трансформатора.


Тип



Sн,

кВа

Напряжение, кВ

Схема и

группа

соединения

обмоток

Потери, Вт


Uк. з

% от


Iх. х.

% от


ВН


НН

ХХ

при

КЗ

при

ТМ-630

2х630

10

0,4

0,23

У/Ун-0

730

2650

4,5

3,85


Расчет линии 10 кВ

Расчет линии 0,4 кВ

Расчет производим методом экономических интервалов, начиная расчет с самого удаленного участка.

Расчетная схема ВЛ-0,4 кВ

Расчет производится по следующим формулам.

Мощность на участке


Руч=ΣР·Ко (5.14)

где, ΣР - сумма мощностей участка

Ко - коэффициент одновременности зависящий от числа потребителей.

Полная мощность участка


Sуч=Руч/cosφ (5.15)


где, cosφ - коэффициент мощности

Эквивалентная мощность.


Sэкв=Sуч·Кд (5.16)


где, Кд - коэффициент динамики, Кд=0,7 стр.56 (л-7)

Расчет мощностей на участках. От подстанции отходит 3 питающих линий 0,4 кВ, расчет 1 отходящей линии.


Участок 1-2

Р1-2=Р2=4,7кВт

Sуч=4,7/0,8=5,8 кВа

Sэкв=5,8·0,7=4,1 кВа


Участок Р10-1

Руч= (Р1+Р2) ·Ко= (10+4,7) ·0,9=13,2 кВт

Sуч=13,2/0,8=16,5 кВа

Sэкв=16,5·0,7=11,5 кВа


Участок 4-7

Р4-7=Р7=30 кВт

Sуч=30/0,8=37,5 кВа

Sэкв=37,5·0,7=26,2 кВа

Участок 5-6

Р5-6=Р6=2,7 кВт

Sуч=2,7/0,8=3,3 кВа

Sэкв=3,3·0,7=2,3 кВа


Участок 4-5

Р4-5= (Р5-6+Р6) ·Ко= (2,7+16,5) ·0,9=17,2 кВт

Sуч=17,2/0,8=21,6 кВа

Sэкв=21,6·0,7=15,1 кВа


Участок 3-4

Р3-4= (Р4-5+Р4-7) ·Ко= (17,2+30) ·0,9=42,4 кВт

Sуч=42,4/0,8=53,1 кВа

Sэкв=53,1·0,7=37,1 кВа


Участок 0-3

Р0-3= (Р3+Р3-4) ·Ко= (15+42,4) ·0,9=51,6 кВт

Sуч=51,6/0,8=64,5 кВа

Sэкв=64,5·0,7=45,2 кВа


Участок А-0

РА-0= (Р0-1+Р0-3) ·Ко= (13,2+51,6) ·0,9=58,3 кВт

Sуч=58,3/0,8=72,9 кВа

Sэкв=72,9·0,7=51 кВа


Провод выбирается по эквивалентной мощности с учетом климатического района, выбираем провод А-35 который может выдерживать нагрузку до 1035 кВа и ΔUтабл=0,876, наибольшая эквивалентная мощность вышла на участке А-0 и составила 51 кВа

Sпров=1035кВа≥Sэкв=51кВа


Согласно этому условию выбранный провод выдерживает расчетную нагрузку и окончательно принимаем именно его.

Проверка выбранного провода на потери напряжения, для этого находим потери напряжения на всех участках.


Uуч=Uтабл·Sуч·Lуч·10 (5.17)


где, Uтабл - табличные потери напряжения выбираются в зависимости от марки провода (Uтабл=0,876 стр.36 (л-7)

Lуч - длина участка, м


U1-2=0,876·5,8·140·10=0,6%

U0-1=0,876·16,5·85·10=1,2%

U4-7=0,876·37,5·35·10=1,1%

U5-6=0,876·3,3·20·10=0,02%

U4-5=0,876·21,6·15·10=0,2%

U3-4=0,876·53,1·45·10=2%

U0-3=0,876·64,5·40·10=2,2%

UА-0=0,876·72,9·3·10=0,19%


Производим суммирование потерь напряжения на участке А-2 и А-7


UА-2=U1-2+U0-1+UА-0=0,6+1,2+0, 19=1,9% (5.18)

UА-7=UА-0+U4-7+U5-6+U4-5+U3-4+U0-3=0, 19+1,1+0,02+0,2+2+2,2=5,7%


Согласно ПУЭ допустимая потеря напряжения на ВЛ-0,4кВ составляет 6% наибольшая потеря напряжения вышла на участке А-7 и составила 5,7% что удовлетворяет требованию ПУЭ и поэтому окончательно принимаем на всех участках провод марки А-35

Расчет 2 отходящей линии.

2 линия питает молочную и ферму на 200 голов.


Участок 8-9

Р8-9=Р9=35 кВт

S8-9=35/0,8=43,7 кВа

Sэкв=43,7·0,7=30,6 кВа


Участок А-8

РА-8= (Р8-9+Р8) ·Ко= (35+66,2) ·0,9=91,8 кВт

SА-8=91,8/0,8=113,8 кВа

Sэкв=113,8·0,7=79,6 кВа


Для второй отходящей линии принимаем провод А-35


Sпров=1035кВа>Sэкв=79,6кВа


условие выполняется, значит, провод выбран верно.

Проверка выбранного провода на потери напряжения.


U8-9=0,876·43,7·35·10=1,3%

UА-8=0,876·113,8·45·10=4,4%


Суммарная потеря напряжения на участках


UА-9=U8-9+UА-8=1,3+4,4=5,7%


Полученный процент потерь удовлетворяет требованиям ПУЭ и выбранный ранее провод принимаем окончательно.

Расчет 3 отходящей линии.

Третья линия питает родильное отделение и 2 животноводческий комплекс.


Участок 10-11

Р10-11=Р11=50 кВт

Sуч=50/0,8=62,5 кВа

Sэкв=62,5·0,7=43,7 кВа


Участок А-10

РА-10= (Р10-11+Р10) ·Ко= (50+66,2) ·0,9=104,5 кВт

Sуч=104,5/0,8=130,7 кВа

Sэкв=130,7·0.7=91,5 кВа


Т.к. протяженность линии и расчетная мощность вышла большая то принимаем провод марки А-70 с Uтабл=0,387

Потери напряжения на участках.


U10-11=0,387·62,5·30·10=0,72%

UА-10=0,387·130,7·90=4,5%


Потери напряжения на всей линии.


UА-11=U10-11+UА-10=0,72+4,5=5,2%


Отклонение напряжения находится в допустимых пределах значит окончательно принимаем выбранный ранее провод.

Расчет токов коротких замыканий.

Расчет производим методом именованных величин, этим методом пользуются при расчетах токов коротких замыканий (к. з) с одной ступенью напряжения, а также в сетях напряжением 380/220 В. В последнем случае учитывают: активное и реактивное сопротивление элементов схемы, сопротивление контактных поверхностей коммутационных аппаратов, сопротивление основных элементов сети - силовых трансформаторов, линий электропередачи. Напряжение, подведенное к силовому трансформатору, считают неизменным и равным номинальному.

Сопротивление силового трансформатора 10/0,4 кВ


Zт=Uк. з. ·U²ном/ (100·Sном. т) =4,5·0,4²·10³/ (100·250) =29 Ом (5.19)


где, Uк. з. - напряжение короткого замыкания, в предыдущих расчетах был выбран силовой трансформатор с Uк. з=4,5%

Uном - номинальное напряжение с низкой стороны, кВ

Sном - номинальная мощность силового трансформатора, кВа

Трехфазный ток к. з. в точке К1


Iк1=Uном/ (√3· (Zт+Zа)) =400/ (1,73· (29+15) =4,71 кА (5.20)


где, Zа - сопротивление контактных поверхностей коммутационных аппаратов принимают равным 15 Ом стр.34 (л-7)

Находим сопротивление первой отходящей линии ВЛ N1

Индуктивное сопротивление линии


Хл=Хо·l=0,35·380=133 Ом (5.22)


где, Хо - индуктивное сопротивление провода, для провода марки А-35 Хо=0,35 Ом/м

l - длина линии, м

Активное сопротивление линии

Rл=Rо·l=0,85·380=323 Ом (5.23)

Страницы: 1, 2, 3, 4, 5, 6, 7


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.