рефераты скачать

МЕНЮ


Анализ режимов работы электрических сетей ОАО "ММК им. Ильича" и разработка адаптивной системы управления режимами электропотребления

со - стоимость единицы потерянной активной мощности;

зк - удельные затраты на КУ.

Для определения минимума функции З приравняем к нулю ее производную от переменной QK:

 (2.5)


Из (2.5) определяется экономически целесообразная реактивная мощность, передача которой от источника к потребителю отвечает минимуму затрат З


 (2.6)


Величина QЭ не зависит от активной мощности Р, а зависит лишь от соотношения стоимостных показателей зк и со и параметров сети U и R, по которой передается мощность.

Вопрос о размещении компенсирующих устройств в электрической сети реальной ЭЭС представляет собой сложную оптимизационную задачу. Сложность заключается в том, что электроэнергетические системы являются большими системами, состоящими из взаимосвязанных подсистем. Рассматривать изолированно каждую отдельную подсистему нельзя, поскольку свойства больших систем определяются характером взаимосвязей отдельных подсистем.

При анализе больших систем используется системный подход [9,10,11], согласно которому анализ большой системы выполняется при разделении ее на подсистемы, непосредственно не связанные между собой, но влияющие друг на друга через систему более высокого уровня.

Применительно к рассматриваемому вопросу электрическая сеть представляется разными уровнями, как это показано на рис. 2.2. верхний уровень - это электрическая сеть напряжением 110 кВ и выше. Эта сложнозамкнутая электрическая сеть, представляемая полной схемой замещения, показана на рис.2.2 условно, как ЭС1. Реактивные мощности, вырабатываемые генераторами электростанций QЭС, компенсирующими устройствами QК, линиями электропередачи QС, а также реактивные мощности, протекающие по связям с соседними ЭС2 и ЭС3 (Q12, Q21, Q13, Q31) обеспечивают в ЭС1 располагаемую реактивную мощность Qр1.


Рисунок 2.2 - Схема размещения КУ в электрической сети


Второй уровень - это множество n разомкнутых местных распределительных сетей напряжением 35 кВ и ниже, присоединенных к n узлам электрической сети верхнего уровня через трансформаторы Т. Эти местные распределительные сети непосредственно не связаны между собой, но влияют друг на друга через сеть верхнего уровня. Синхронные генераторы, компенсаторы и двигатели в каждой такой распределительной сети представлены одной эквивалентной синхронной машиной G. От местных электрических сетей через распределительные трансформаторы Т1 питаются низковольтные потребители P+jQ.

Компенсирующие устройства могут устанавливаться на шинах высшего (jQкв) и низшего (jQкс) напряжения трансформаторов Т, а также на шинах 0,4 кВ распределительных трансформаторов Т1 и в самой сети 0,4 кВ (jQкн). Значение мощностей этих КУ и подлежит определению.

В общем виде задача оптимизации размещения КУ формулируется следующим образом: определить реактивные мощности имеющихся в узлах 6…35 кВ синхронных машин G, мощности КУ в сетях всех напряжений Qкв, Qкс, Qкн, а также значения реактивных мощностей Qэi (i=1, 2, …n), передаваемых в сети потребителей, при которых обеспечивается минимум суммарных затрат.

Расчеты компенсации реактивной мощности для сетей всех видов выполняются как при проектировании развития электрических сетей, так и в условиях их эксплуатации. При проектировании определяются мощности КУ и решается задача их распределения в электрической сети. В условиях эксплуатации определяют оптимальные режимы имеющихся КУ в течение суток. Критериями оптимальности в этом случае служат минимум потерь мощности и энергии и соответствие отклонений напряжений допустимым значениям.

При проектировании схемы электроснабжения, как правило, минимизируются денежные затраты на эту схему. Снижение потерь мощности за счет установки КУ уменьшает затраты на схему, по следующим причинам:

каждый потерянный кВт мощности необходимо выработать на электростанциях и, следовательно, затратить на это денежные средства;

генерация недополученной реактивной мощности на электростанциях обходится гораздо дороже, чем потребление (в 3 раза!).

Однако и компенсирующие устройства требуют денежных затрат.

В связи с этим возникает задача определения оптимальной мощности компенсирующих устройств, отвечающей минимуму суммарных затрат. Такая задача относится к задаче безусловной оптимизации и может быть решена, например, градиентными методами.

Рассмотрим такую задачу для магистральной схемы электроснабжения (рис. 2.3). Необходимо определить мощности компенсирующих устройств QК1 и QК2 в узлах 1 и 2 исходя из условия минимума суммарных затрат на установку этих устройств и покрытие потерь активной мощности в схеме.


Рисунок 2.3 - Схема электроснабжения


Исходные данные:

напряжение схемы U;

сопротивления линий R1 и R2;

реактивные нагрузки узлов 1 и 2 Q1 и Q2;

удельные затраты на установку компенсирующих устройств zo;

удельные затраты на покрытие потерь активной мощности со.

Целевая функция, представляющая собой суммарные затраты на установку компенсирующих устройств и покрытие потерь активной мощности в схеме, имеет следующий вид


 (2.7)


где а1=R1∙co∙10-3/U2=0,0006;

а2=R2∙co∙10-3/U2=0,0004.

Введение числового коэффициента 10-3 необходимо для приведения всех составляющих целевой функции к одной размерности (у.е.).

Для решения задачи выберем метод покоординатного спуска. Определим частные производные целевой функции Z по переменным Q1 и Q2:


 (2.8)


Примем исходное приближение:


 (2.9)


Для этих значений вычислим значения целевой функции и ее частных производных.

Примем, что в направлении переменной Qk2 целевая функция Z убывает сильнее, чем в направлении переменной Qk1, т.е.


 (2.10)


В направлении переменной Qk2 и начнем спуск.

Примем величину шага =400 квар. Первое приближение (первый шаг) будет Qk11=0, Qk21=400 квар. Рассчитываем значение целевой функции Z1.

Второй шаг: Qk12=0, Qk22=400 квар. Рассчитываем значение целевой функции Z2.

Спуск по координате Qk2 следует продолжать до тех пор, пока Zn<Zn-1. Как только Zn становится больше предыдущего значения Zn-1, следует спуск координате Qk2 прекратить и вернуться к значениям переменных Qk1n-1 и Qk2n-1, полученным на n-1 шаге.

Выполним новый шаг в направлении другой переменной Qk1. Находится новое значение целевой функции Z. Спуск по этой переменной продолжается так же, как и в направлении Qk2 - до тех пор, пока Zm<Zm-1.

Точка с полученными координатами Qk1m-1, Qk2n-1 находится в окрестности минимума целевой функции Z. При принятой длине шага =400квар более точное решение получено быть не может. Для получения более точного решения необходимо уменьшить шаг и продолжить спуск. Абсолютно точно что, чем меньше шаг, тем точнее будет результат. Посредством ручного расчета мы не можем добиться такой точности. Для решения этой задачи целесообразно будет использовать программное обеспечение, предназначенное для решения задачи нелинейного программирования с нелинейными ограничениями. Одним из таких языков программирования является язык С++.

Это была рассмотрена задача безусловной оптимизации, т.е. нахождения абсолютного минимума. При решении поставленной задачи для нахождения оптимального режима работы сети ОАО "ММК им. Ильича" требуется найти относительный минимум, так как система ограничений будет иметь нелинейный вид (см. далее "Разработка программного обеспечения"). Таким образом, перед нами ставится задача условной оптимизации по реактивной мощности, для которой мы применяем выбранный ранее градиентный метод квадратичного программирования.


3. Разработка программного обеспечения метода оптимизации


Для оптимизации режимов по реактивной мощности разработан комплекс программ (см. рис. 3.1). Его условно можно разделить на две части:

интерфейсная часть, разработанная в удобном, понятном виде, предназначенная для работы с пользователем любого уровня;

расчетная часть, которая непосредственно выполняет необходимые расчеты для получения оптимальных режимов.

В интерфейсную часть комплекса входят программы ввода следующих параметров:

линий;

трансформаторов;

компенсирующих устройств;

реакторов;

нагрузок.

В расчетную часть входят следующие программы:

формирования узловой матрицы;

формирования векторов узловых токов без оптимизации мощностей компенсирующих устройств;

расчета узловых напряжений;

формирования векторов ограничений узловых токов;

расчета оптимальных значений узловых напряжений;

расчета оптимальных значений мощностей компенсирующих устройств.

Для расчета установившегося неоптимального режима разработаны программы:

формирования матриц узловых проводимостей,

формирования узловых токов источников,

ЛУ разложения матрицы,

решение систем уравнений узловых напряжений.

Рисунок 3.1 - Блок-схема разработанного программного обеспечения


Для расчета оптимального режима разработана программа условной оптимизации с нелинейными ограничениями. В качестве исходных данных для этой программы используется узловые напряжения, рассчитанные для неоптимального режима. Оптимизация производится градиентным методом квадратичного программирования.

Программа расчета неоптимального установившегося режима включает в себя алгоритм треугольного разложения матрицы и итерационный алгоритм решения системы нелинейных уравнений подобный методу Гаусса-Зейделя, модифицированный для решения сетевых нелинейных задач.[2,4,8] Особенностью итерационного алгоритма является то, что на каждой последующей итерации для определения узловых токов источников используется значения узловых напряжений, полученное на предыдущей итерации (см. 3.1).


. (3.1)


Для решения задачи нелинейного программирования и определения оптимальных узловых напряжений был разработана программа NCONF CPP, которая реализует последовательный алгоритм квадратичного программирования и конечноразностный градиент. [12]

NCONF CPP (m, me, n, xguess, ibtype, xlb, xub, xscale, iprint, maxitn; x, fvalue).

Параметры программы NCONF CPP:

входные: m, me, n, xguess, ibtype, xscale, iprint, maxitn;

входной/выходной: xlb, xub;

выходные: x, fvalue.

m - общее число ограничений.

me - число ограничений равенства.

n - число переменных.

x - вектор начальных значений напряжений (активных и реактивных составляющих).

xguess - вектор размена n, содержащий начальное предположение о значениях напряжений;

ibtype - скаляр, задающий вид ограничений на переменные:

ibtype=3 - задаем ограничение на напряжение первого узла, все остальные будут иметь те же ограничения.

xlb - вектор размера n, содержащий нижние границы переменных:

входная, если ibtype=0;

выходная, если ibtype=1 или 2;

входная/выходная, если ibtype=3.

xub - вектор размера n, содержащий верхние границы переменных:

входная, если ibtype=0;

выходная, если ibtype=1 или 2;

входная/выходная, если ibtype=3.

xscale - вектор размера n, содержащий диагональную матрицу масштабирования переменных. Все элементы вектора xscale равны 1.0.

iprint - параметр, задающий желаемый уровень печати; принимает следующие значения:

0 - нет печати;

1 - выводится итоговый анализ о работе программы;

2 - дополнительно на каждой итерации выводится одна строка с промежуточными результатами;

3 - о каждой итерации выводится детальная информация.

maxitn - максимально допустимое число итераций.

х - вектор размера n, содержащий вычисленное решение.

fvalue - скаляр, содержащий значение целевой функции в полученном решении.


Общая задача нелинейного программирования, решаемая данной программой NCONF CPP, состоит в поиске минимума целевой функции

 (3.2)

с ограничениями

 (3.3)

где все функции задачи являются непрерывно дифференцируемыми.

При решении поставленной задачи целевая функция представляет собой потери мощности и имеет вид:

, (3.4)

где  - соответственно активная и реактивная составляющие векторов узловых напряжений;

 - соответственно активная и реактивная составляющие векторов узловых проводимостей.

Роль нелинейных ограничений выполняет система узловых уравнений с источниками реактивной мощности.

 (3.5)

где Y11, …,Y1N - собственные и взаимные проводимости,

U1,…,U2 - узловые напряжения.

Некоторые уравнения системы (3.5) могут не содержать составляющую  в том случае, если в узлах, для которых составляются данные уравнения, не установлены компенсирующие устройства. Такое уравнение вместо знака ≤ будет содержать знак равенства и считаться линейным.

Кроме целевой функции и ограничений любая задача минимизации должна иметь и граничные условия:

, (3.6)

т.е. значения напряжений в любом, даже самом удаленном от источника узле не должны выйти за рамки, нормируемые ПУЭ.


Метод, используемый данной программой NCONF CPP, основан на последовательном выделении и решении подзадач квадратичного программирования, которые получаются в результате применения квадратичной аппроксимации лангранжиана и линеаризации ограничений[8,12]. Таким образом, на каждой итерации решается подзадача

 (3.7)

с ограничениями

 (3.8)

где Bk - положительно определенная аппроксимация гессиана;

xk - текущая точка.

Пусть dk - решение подзадачи. Тогда новая точка xk+1 определяется в результате линейного поиска:

 (3.9)

Новая точка такова, что в ней функция качества имеет наименьшее значение. В качестве функции качества употребляется функция Лагранжа. Если оптимум не достигнут, то матрица Bk пересчитывается по положительно определенной формуле секущих.

Главная программа NCONF CPP содержит несколько подпрограмм:

foryzc - программа формирования матрицы узловых проводимостей;

luc - программа используется для разложения матрицы на треугольные сомножители;

rluc - программа, которая отвечает за решение системы уравнений.


4. Разработка адаптивной системы управления режимами электропотребления


4.1 Функции автоматизированной системы


Сбор, накопление и передача информации, характеризующей режим электропотребления комбината (информация о нагрузках).

Сбор, накопление и передача информации, характеризующей состояние электрической сети (информация об обрывах линий и переводах в ремонт оборудования)

Передача информации с контрольных точек на диспетчерский пункт и обратно.

Обработка полученной информации, расчет режима электропотребления

Автоматическое изменение параметров устройств, регулирующих реактивную мощность, в местах, где это возможно.


4.2 Описание работы системы


4.2.1 Ввод системы в работу

При первоначальном запуске системы в эксплуатацию собирается информация о конфигурации электрической сети.

Собираются следующие параметры:

схема сети;

информация о линиях: длина, марка проводов или кабеля, которыми выполнено питание между подстанциями.

После предварительного расчета, для упрощения работы программного обеспечения в базу данных диспетчерского пункта заносятся следующие параметры:

узловая топологическая матрица согласно схеме замещения электрической сети;

матрица узловых проводимостей схемы;

зарядные мощности линий.

Эти данные хранятся в сервере диспетчерской и используются в качестве исходных данных для последующего расчета режима работы сети. Изменяться эти данные могут в случае изменения конфигурации сети при плановых или аварийных выводах оборудования из работы.


4.2.2 Работа системы в нормальном режиме

На первом этапе в условиях нормальной работы в определенный момент времени (например, раз в неделю) происходит сбор информации, характеризующей режим электропотребления.

Собираются следующие параметры:

нагрузки подстанций;

мощности питающих систем (в данном случае, подстанций "Ильич", "Заря" и "Азовская").

На большинстве подстанций установлено оборудование, которое может быть использовано для учета электроэнергии, например, микропроцессорная релейная защита.

Вторым этапом работы автоматизированной системы является передача по линиям связи собранной информации с подстанций на диспетчерский пункт.

Третьим этапом является расчет текущего режима работы электрической сети, нахождение оптимального режима работы электрической сети, описанный в предыдущих главах пояснительной записки.

Получаем результаты расчета, необходимые для автоматического внедрения оптимального режима работы сети на практике: мощности компенсирующих устройств.

Следующим этапом является передача результатов расчета по линиям связи обратно на подстанцию.

Заключительным этапом можно считать регулирование компенсирующих устройств в соответствии с данными расчета. Желательно исключить человеческий фактор, для этого на каждой подстанции помимо современной релейной защиты, отвечающей за сбор информации, желательно установить контроллеры, которые будут автоматически регулировать мощность компенсирующих устройств в местах, где это возможно.

Для более точной работы автоматической системы необходимо также предусмотреть обратную связь: после всех регулировок происходит новый сбор информации и перепроверка, что новые установленные параметры соответствуют оптимальному электропотреблению. В случае если что-либо было сделано неправильно, вносится коррекция в исходные данные, и весь алгоритм работы автоматической системы повторяется заново.


4.2.3 Работа системы в случае изменения конфигурации сети

В случае изменения конфигурации сети: обрыв линий, вывод в ремонт трансформаторов какой-либо подстанции, поломка какого-либо электрооборудования, которое влияет на процесс энергопотребления, - сбор информации происходит вне рабочего графика, т.е. непосредственно после изменения.

В этом случае собираемые данные:

схема сети;

информация о линиях: длина, марка проводов или кабеля, которыми выполнено питание между подстанциями;

нагрузки подстанций;

мощности питающих систем (в данном случае, подстанций "Ильич", "Заря" и "Азовская").

Вторым предварительным этапом пересчитывается матрица узловых проводимостей, зарядные мощности линий, формируется новая схема замещения сети.

Далее система работает аналогично работе при нормальном режиме.

В случае если данные изменения конфигурации сети планируются на длительный или постоянный срок, результаты предварительного расчета считаются новыми исходными данными и заносятся в базу данных сервера диспетчерской.


Таблица 4.1 - Сводная таблица собираемой и рассчитываемой информации

№ п/п

Этап работы автоматизиро-ванной системы

Входные данные

Полученные результаты

Дальнейшее использование результатов

1

2

3

4

5

1

Предварительный расчет

Схема сети; информация о линиях: длина, марка проводов или кабеля, которыми выполнено питание между подстанциями.

узловая топо-логическая матрица согласно схеме замещения эл. сети; матрица узловых прово-димостей зарядные мощ-ности линий.

Заносятся в базу данных сервера диспетчеризации, изменяются при изменении конфигурации сети

2

Первый этап - сбор информации


нагрузки подстанций; мощности питающих систем (в данном случае, подстанций "Ильич", "Заря" и "Азовская").

Второй этап - передача на диспетчерский пункт

3

Третий этап - оптимизация текущего режима на языке программирова-ния С++

Результаты предваритель-ного расчета + результаты первого этапа (подробнее см. выше)

Оптимальные потери активной и реактивной мощностей; мощности комп. устройств


4

Четвертый этап - передача с диспетчерского пункта

Мощности компенсирующих устройств



5

Обратная связь - проверка соответствия между рассчитанными мощностями КУ и отрегулирован-ными

Входные данные предваритель-ного расчета + первого этапа + мощности КУ

Подтверждение о соответствии или об сообщение об изменении режима

В случае несоответствия - рекомендации к пересчету режима

Страницы: 1, 2, 3, 4, 5, 6


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.