рефераты скачать

МЕНЮ


Свойства симметрии и закона сохранения

Свойства симметрии и закона сохранения

Ульяновский Государственный Технический Университет

Авиационный филиал

Кафедра экономики, управления, информации




















КУРСОВАЯ РАБОТА

по теме: “Свойства симметрии и закона сохранения”









                                                                                Выполнила:       студентка группы МД-23

                                                                             __________________________


                                                                               

                                                                                Проверил:           __________________________

                                                                                                                                __________________________









г. Ульяновск

1998 г.

ВВЕДЕНИЕ

 


             Слово "симметрия" ("symmetria") имеет греческое происхождение и означает "соразмерность". В повседневном языке под симметрией понимают чаще всего упорядоченность, гармонию, соразмерность. Гармоничная согласованность частей и целого является главным источником эстетической ценности симметрии. Кристаллы издавна восхищали нас своим совершенством, строгой симметричностью форм. Симметричные мозаики, фрески, архитектурные ансамбли будят в людях чувство прекрасного, музыкальные и поэтические произведения вызывают восхищение именно своей гармоничностью. Таким образом, можно говорить о принадлежности симметрии к категории прекрасного.

              Научное определение симметрии принадлежит крупному немецкому математику Герману Вейлю (1885-1955), который в своей замечательной книге "Симметрия"  проанализировал также переход от простого чувственного восприятия симметрии к ее научному пониманию. Согласно Вейлю, под симметрией следует понимать неизменность (инвариантность) какого-либо объекта при определенного рода преобразованиях. Можно сказать, что симметрия есть совокупность инвариантных свойств объекта. Например, кристалл может совмещаться с самим собой при определенных поворотах, отражениях, смещениях. Многие животные обладают приближенной зеркальной симметрией при отражении левой половины тела в правую и наоборот. Однако подчиняться законам симметрии может не только материальный, но и, к примеру, математический объект. Можно говорить об инвариантности функции, уравнения, оператора при тех или иных преобразованиях системы координат. Это в свою очередь позволяет применять категорию симметрии к законам физики. Так симметрия входит в математику и физику, где она также служит источником красоты и изящества.

                Постепенно физика открывает все новые виды симметрии законов природы: если вначале рассматривались лишь пространственно-временные (геометрические) виды симметрии, то в дальнейшем были открыты ее негеометрические виды (перестановочная, калибровочная, унитарная и др.). Последние относятся к законам взаимодействий, и их объединяют общим названием "динамическая симметрия".

 

 

 

СИММЕТРИЯ.



Анализ развития физики позволяет заметить, что по трудному пути к идеалу — единой картине мира — ее вела идея симметрии. С помощью представления о симметрии человек пытается понять порядок, красоту и совершенство природы. Первоначальный смысл симметрии — это соразмерность, сходство, подобие, порядок, ритм, согласование частей в целостной структуре. Симметрия и структура неразрывно связаны. Если некоторая система имеет структуру, то она обязательно имеет и некоторую симметрию. Идея симметрии имеет исключительное значение и как ведущее начало в осмыслении структуры физического знания. Едва ли можно оспаривать эвристическую ценность и методологическое значение принципа симметрии. Известно, что при решении конкретных физических проблем этот принцип играет роль критерия истинности.

            С древних времен идея симметрии оказывала огромное влияние на развитие научной мысли. На эту идею еще при своем возникновении опирались натурфилософия, космология и математика. Пифагорейцы создавали первые космологические системы центрально-симметричной Вселенной, они разработали учения о пропорциях, о музыкальных тонах и о пяти симметричных многоголосиях, отождествлявшихся с основными природными стихиями. Гиппас ввел термин “симметрия”, который буквально означал “соразмерность”. Идеи симметрии, гармонии и сохранения были основными в структуре древнегреческой мысли и понимались как переходящие друг в друга. Анаксимандр, Анаксимен и Гераклит создали учение о вечном космосе, который периодически возникает и умирает. Учение Левкиппа и Демокрита о пустоте и вечных и неизменных, но движущихся атомах основано на идее симметрии, гармонии и сохранения материи. Пустота, о которой говорится в этом учении, может быть условно представлена как первоначальный образ безграничного трехмерного однородного и изотропного евклидова пространства.

            Во время Ренессанса идея симметрии, забытая в период средневековья, была возрождена. Николай Кузанский формулирует основы концепции однородного изотропного, бесконечного пространства. У Леонардо да Винчи зреет мысль об однородности времени. Аргументы, основанные на идее симметрии, появляются в учении Н. Коперника. Система Коперника играет важную роль в восприятии идеи пространственно-временной симметрии, необходимой для развития классической механики. Дж. Бруно отстаивает мысль о бесконечном однородном изотропном пространстве. Г. Галилей формулирует принципы инерции и относительности. Он, а также И. Кеплер, Р. Декарт и X. Гюйгенс развивают идеи о пространственно-временной симметрии до такой степени, что они становятся фундаментальными в “Началах” И. Ньютона. Введение понятий абсолютного пространства и абсолютного времени в ньютоновской механике приводит к объединению локальной и космологической симметрий в единую симметрию.

            Однако зародившийся в начале XVII в. теоретико-инвариантный подход не смог получить полного развития. Позднее, в эпоху аналитической механики, установился стиль, при котором физическая теория рассматривалась формально как математическая теория дифференциальных уравнений. Л. Эйлер, Ж. Даламбер, Ж. Лагранж выдвинули на первый план аксиомы динамики. Динамический подход не нуждался в явном виде в идее симметрии, но опирался на нее неявным образом. И во второй половине XVII в. идея симметрии временно потеряла свое фундаментальное и эвристическое значение. Законы сохранения утратили свои основные позиции и стали теоремами — вычислялись как интегралы движения.

            Такой стиль мышления господствовал до начала нашего столетия, когда на передний план был снова выдвинут теоретико-инвариантный подход. Стало ясным, что переход от динамического к теоретико-инвариантному стилю мышления стал неизбежным. Еще в середине XIX в. постепенно усиливался интерес к принципам симметрии и сохранения. Этот процесс стал результатом действия двух факторов. С одной стороны, физика освобождалась от тесных рамок механики. Формировались и быстро развивались новые области физики — термодинамика, оптика, электродинамика. Ю. Майер открыл закон сохранения и превращения энергии. С другой стороны, развивались новые математические теории — теория групп, неевклидова геометрия.

            Необходимо отметить, что в классической физике XVII—XIX вв. идея симметрии не была явно связана с принципами относительности и инвариантности. Как известно, в физике термин “симметрия” идет от натурфилософии и геометрии, и применялся он прежде всего в кристаллографии, которая в отличие от механики не считалась фундаментальной. Первым вне рамок физики кристаллов использовал идею симметрии П. Кюри, рассуждавший в 1894 г. о симметрии электрических и магнитных полей. Но идея Кюри осталась неразработанной и не оказала влияния на развитие физики. И только в последнее время, после работ Е. Вигнера, принципы инвариантности и относительности в качестве физических законов стали пониматься явным образом как принципы симметрии.

            Инвариантный подход формируется и утверждается с появлением специальной теории относительности. В рамках этого подхода физические теории рассматриваются как теории инвариантов некоторых групп преобразований. Дальнейшее развитие идеи относительности — создание общей теории относительности, релятивизация различных физических теорий, опыт разработки единой теории поля, создание релятивистской космологии (работы А. Эйнштейна, В. де Ситтера, А.А. Фридмана) — принесли новые успехи в этом направлении еще в первой четверти нашего столетия. Э. Нетер выяснила связь между принципом симметрии и принципом сохранения. Окончательно утвердился инвариантный подход и в квантовой теории. В 1930 г. П. Дирак писал: “...Теория преобразований, которая прежде всего была использована в теории относительности, а вслед за этим и в квантовой теории, выражает сущность нового метода в теоретической физике. Ее современный прогресс состоит в том, что наши уравнения становятся инвариантными относительно все более широкого класса преобразований”. И поистине, успехи современной физики элементарных частиц немыслимы без теории инвариантов. Принцип симметрии пронизывает все структуры современной физики. Как методологический принцип, он лежит в основании различных физических теорий и определяет структурную организацию современной физической теории как целого.

            Детально анализируя различные конкретные виды симметрии, Н.Ф. Овчинников пришел к выводу, что в абстрактном виде принцип симметрии представляет собой единство противоположностей: изменения и сохранения. “Единство сохранения и движения,— пишет он,— такова краткая формулировка симметрии, выраженная на абстрактно-теоретическом уровне”. Такое определение симметрии представляется наиболее общим и применимым для всякого случая. Симметрия означает, что при некоторых преобразованиях сохраняются некоторые вещи, свойства и отношения. Сохранение означает тождество, а преобразования соответствуют изменениям, которые испытывает данное тождество. В этом смысле если сохранение указывает на абстрактное, неизменное тождество, то симметрия соответствует конкретному, изменяющемуся в тождестве. Иными словами, симметрия есть конкретное сохранение. Путь познания от принципа сохранения к принципу симметрии представляет собой восхождение от абстрактного к конкретному.

            Как принцип сохранения, так и принцип симметрии, по утверждению Н.Ф. Овчинникова, являются “генерализующими принципами”. Этот исследователь сформулировал закон сохранения симметрии, в соответствии с которым при всяком нарушении симметрии устанавливается новый, высший вид симметрии. Пример такого отношения — установление СРТ-симметрии. Открытие некоторой асимметрии не означает отрицания принципа симметрии. “Правое” и “левое” сами по себе асимметричны, но взятые вместе как единство противоположностей составляют высшую симметрию. Вообще, асимметрия необходима как противоположность симметрии. Асимметрия и симметрия в единстве образуют высшую метасимметрию.

            Следование принципу симметрии — существенный и эффективный метод преодоления проблемной ситуации, тех кризисных моментов, когда становится очевидной противоположность между теорией и экспериментальными фактами или между элементами внутри самой теоретической концепции. Как фундамент современной теоретико-инвариантной концепции такой методологический принцип оказывается важнейшим фактором, определяющим структурную организацию физической теории. “Выдвижение на передний план теоретико-инвариантного подхода создает необходимые предпосылки для отыскания выхода из различных проблемных ситуаций в развитии современной физики,— пишет В.П. Визгин.— В этом уже неоднократно убеждались при исследовании эвристических и прогностических функций принципа симметрии и как систематического способа построения физической теории, и как способа описания развития, и как принципа организации”.

            Анализируя действие принципа симметрии в различных проблемных ситуациях, В.П. Визгин отмечает два дополнительных момента: с одной стороны, симметрия и ее нарушения выступают как источник проблемной ситуации и одновременно симметрия служит методом ее преодоления, а с другой стороны, априоризация (“замораживание”) определенного вида симметрии препятствует разрешению проблемной ситуации. Первым шагом к прояснению проблемы является открытие инвариантности, установление симметричных элементов. В самом общем случае стремление восстановить нарушение симметрии — это путь преодоления проблемной ситуации. Такая эвристическая сила принципа симметрии как метода нахождения выхода из проблемной ситуации воспринимается как фактическое оправдание закона сохранения симметрии, сформулированного Н.Ф. Овчинниковым в виде универсального принципа природы и научного познания.

            Действие принципа симметрии в проблемных ситуациях можно показать на некоторых примерах. Когда теоретическое осмысление экспериментальных фактов ведет к установлению некоторой симметричной закономерности, одновременно появляется и необходимость в переосмыслении теории, так чтобы она объясняла зависимости симметрического вида между этими экспериментальными фактами. И. Кеплер, анализируя результаты астрономических наблюдений Т. Браге, открыл законы движения планет. Можно заметить, что законы Кеплера имеют симметрическую основу: первый закон говорит об эллиптичности орбит, второй и третий законы представляют собой, по существу, законы сохранения — секторной скорости планет и соотношения R3/Т3. Такая симметрия не могла быть объяснена на основе господствовавших тогда теоретических представлений Аристотеля и Коперника. Возникла проблемная ситуация, которая была разрешена Ньютоном, создавшим теорию, объясняющую кеплеровскую симметрию.

            Другой интересный пример связан с теорией атома водорода, сформулированной Н. Бором. Опыты Э. Резерфорда по рассеянию альфа-частиц для выяснения строения атома показали, что структура атома симметрична. Обобщенная формула Бальмера и комбинационный принцип рассеяния Рица имеют симметричный характер. Вместе с гипотезой М. Планка о квантах они выходят за рамки классической физики. Образовалась исключительно сложная проблемная ситуация, о которой А. Эйнштейн в своей творческой автобиографии писал так: “Все это стало мне ясно уже вскоре после появления основной работы Планка, так что я, хотя и не имел замены для классической механики, все-таки мог видеть, к каким следствиям ведет этот закон теплового излучения как для фотоэлектрического эффекта и других родственных ему явлений, связанных с превращениями лучистой энергии, так и для теплоемкости тел, в частности твердых тел. Но все мои попытки приспособить теоретические основы физики к этим результатам потерпели полную неудачу. Это было так, точно из-под ног ушла земля и нигде не было видно твердой почвы, на которой можно было бы строить. Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточно, чтобы позволить Бору — человеку с гениальной интуицией и тонким чутьем — найти главнейшие законы спектральных линий и электронных оболочек атомов, включая их значение для химии. Это кажется мне чудом и теперь. Это — наивысшая музыкальность в области мысли”.

            Но какой выход из проблемной ситуации нашел Бор? Опираясь на гипотезу Планка о квантах, Бор фактически восстановил права принципа симметрии, так как его постулат — это, по существу, закон сохранения энергии и момента импульса. Эйнштейн объяснил фотоэффект, используя квантовую гипотезу. Его уравнение фактически представляет собой закон сохранения энергии. Планк также с помощью гипотезы о квантах преодолел проблемную ситуацию — “ультрафиолетовую катастрофу”. Но тут естественным образом возникают вопросы: каково отношение самой квантовой гипотезы к принципу симметрии? не указывает ли постоянная Планка на сохранение? как относятся принцип неопределенности и принцип дополнительности к принципу симметрии? может ли проблемная ситуация в квантовой теории — боровской концепции дополнительности — быть освещена с позиций принципа симметрии?

            Известно, что симметрия, обнаруженная в математическом аппарате, стала источником проблемной ситуации и одновременно методом преодоления ее. В этом отношении примечательна специальная теория относительности. Инвариантность уравнений Максвелла относительно преобразований Лоренца породила проблемную ситуацию, из которой Эйнштейн нашел выход, пересмотрев представления о пространстве и времени и обосновав новую симметрию. При этом специальная теория относительности создала новую проблемную ситуацию, но предсказанные ею релятивистские эффекты (зависимость массы от скорости и др.) способствовали утверждению и признанию данной теории.

            Показателен и пример роли симметрии в физике элементарных частиц. Речь идет о предсказании омега-гиперона на основе SU-симметрии. Теоретические успехи физики элементарных частиц были бы немыслимы без открытия сохранения барионного заряда, лептонного заряда, изотонического спина, странности и др., которым соответствует определенная симметрия. Идея симметрии подсказала кварковую модель. Это породило новую проблемную ситуацию, выход из которой также связан с использованием принципа симметрии.

            Приведенные примеры, демонстрирующие роль принципа симметрии в разрешении проблемных ситуаций, позволяют утверждать, что как только фиксируется фундаментальное нарушение симметрии, например Р-симметрии или СР-симметрии, так сразу же возникает острая проблемная ситуация, выход из которой связан с установлением новой, более высокой симметрии. И как только эта симметрия выявлена, так сразу же физика получает новый стимул для своего развития. Иными словами, закон сохранения симметрии определяет пути развития физики. И наоборот, априоризация определенного вида симметрии, ее абсолютизация тормозят решение проблемной ситуации, а тем самым и развитие физической теории. История физики дает много примеров такой абсолютизации и ее последствий: это абсолютизация аристотелевской симметрии пространства и времени, ньютоновской симметрии пространства и времени, различные попытки ревизии теории относительности, желание приписать отдельным видам симметрии универсальность и т.д.

            Две тенденции: движение симметрии к ее высшим конкретным формам и стремление к ограничению такого движения, проявляющееся в абсолютизации определенного вида симметрии,— находятся в постоянном конфликте. В.П. Визгин пишет по этому поводу: “Симметрия — оружие обоюдоострое: с одной стороны, симметрия и ее нарушения есть источник проблемной ситуации и метод их преодоления, а с другой — всякая симметрия, взятая отдельно и возведенная в ранг универсальной и абсолютно достоверной истины, есть существенная преграда на пути развития физики. Эти две особенности симметрии нередко так переплетаются между собой, что одни физики видят в нарушении симметрии крах теоретической системы и пытаются любой ценой законсервировать принципы инвариантности, которые кажутся им нерушимыми. Другие физики в это же время видят в таком нарушении стимул развития теории, плодотворный и преобразующий. Именно такое развитие проблемной ситуации, связанное с симметрией, часто сопровождалось жаркими спорами и истинным драматизмом (борьба Галилея против схоластики Аристотеля, коллизия Галилей — Кеплер, борьба Лейбница и Гюйгенса против концепции абсолютного пространства и времени, неевклидова геометрия, дискуссии вокруг СТО и ОТО, история открытия несохранения четности и т. д.)”.

            Итак, принцип симметрии, превращенный в метод, определяет пути движения физической теории к истине, способствует успешному преодолению проблемных ситуаций. Кроме того как единство противоположностей принцип симметрии управляет и процессом саморазвития — борьбой двух противоположных тенденций, установлением новых форм симметрии и сохранением их. Отсюда становится очевидным, что существует самая тесная связь между симметрией и сохранением.


























ЗАКОН СОХРАНЕНИЯ.


В философском энциклопедическом словаре читаем "Закон - внутренняя существенная и устойчивая связь явлений, обусловливающая их упорядоченное изменение. На основе знания закона возможно достоверное предвидение течения процесса. Понятие закона близко  к понятию закономерности, которая представляет собой совокупность взаимосвязанных по содержанию законов, обеспечивающих устойчивую тенденцию или направленность в изменениях системы. Вместе с тем закон выражает одну из сторон сущности, познание которой в теории совпадает с переходом от эмпирических фактов к формулировке законов изучаемых процессов".

Понятие закона сформулировалось в результате длительного развития науки и философской мысли. Из каких же источников почерпнуто это понятие? Одним из таких источников является социально-историческая практика человечества. В древнем обществе, в условиях первобытного родового строя закон выступает прежде всего как неописанное, но тем не менее обязательное правило, которому должно подчиняться поведение людей.

Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.