рефераты скачать

МЕНЮ


О взаимосвязи философии и математики

p> ЭЛЕЙСКАЯ ШКОЛА

Элейская школа довольно интересна для исследования, так как это одна из древнейших школ, в трудах которой математика и философия достаточно тесно и разносторонне взаимодействуют. Основными представителями элейской школы считают Парменида (конец VI - V в. до н.э.) и Зенона (первая половина
V в. до н.э.).

Философия Парменида заключается в следующем: всевозможные системы миропонимания базируются на одной из трех посылок: 1) есть только бытие, небытия нет; 2) существует не только бытие, но и небытие; 3) бытие и небытие тождественны. Истинный Парменид признает только первую посылку.
Согласно ему, бытие едино, неделимо, неизменяемо, вневременно, закончено в себе, только оно истинно сущее; множественность, изменчивость, прерывность, текучесть - все это удел мнимого.

С защитой учения Парменида от возражений выступил его ученик Зенон.
Древние приписывали ему сорок доказательств для защиты учения о единстве сущего (против множественности вещей) и пять доказательств его неподвижности (против движения). Из них до нас дошло всего девять.
Наибольшей известностью во все времена пользовались зеноновы доказательства против движения; например, «движения не существует на том основании, что перемещающееся тело должно прежде дойти до половины, чем до конца, а чтобы дойти до половины, нужно пройти половину этой половины и т.д.»[12].

Аргументы Зенона приводят к парадоксальным, с точки зрения «здравого смысла», выводам, но их нельзя было просто отбросить как несостоятельные, поскольку и по форме, и по содержанию удовлетворяли математическим стандартам той поры. Разложив апории Зенона на составные части и двигаясь от заключений к посылкам, можно реконструировать исходные положения, которые он взял за основу своей концепции. Важно отметить, что в концепции элеатов, как и в дозеноновской науке, фундаментальные философские представления существенно опирались на математические принципы. Видное место среди них занимали следующие аксиомы:

1. Сумма бесконечно большого числа любых, хотя бы и бесконечно малых, но протяженных величин должна быть бесконечно большой;

2. Сумма любого, хотя бы и бесконечно большого числа непротяженных величин всегда равна нулю и никогда не может стать некоторой заранее заданной протяженной величиной.

Именно в силу тесной взаимосвязи общих философских представлений с фундаментальными математическими положениями удар, нанесенный Зеноном по философским воззрениям, существенно затронул систему математических знаний.
Целый ряд важнейших математических построений, считавшихся до этого несомненно истинными, в свете зеноновских построений выглядели как противоречивые. Рассуждения Зенона привели к необходимости переосмыслить такие важные методологические вопросы, как природа бесконечности, соотношение между непрерывным и прерывным и т.п. Они обратили внимание математиков на непрочность фундамента их научной деятельности и таким образом оказали стимулирующее воздействие на прогресс этой науки.

Следует обратить внимание и на обратную связь - на роль математики в формировании элейской философии. Так, установлено, что апории Зенона связаны с нахождением суммы бесконечной геометрической прогрессии. На этом основании советский историк математики Э. Кольман сделал предположение, что
«именно на математический почве суммирования таких прогрессий и выросли логико-философские апории Зенона»[13]. Однако такое предположение, по- видимому, лишено достаточных оснований, так как оно слишком жестко связывает учение Зенона с математикой при том, что имеющие исторические данные не дают основания утверждать, что Зенон вообще был математиком.

Огромное значение для последующего развития математики имело повышение уровня абстракции математического познания, что произошло в большей степени благодаря деятельности элеатов. Конкретной формой проявления этого процесса было возникновение косвенного доказательства («от противного»), характерной чертой которого является доказательство не самого утверждения, а абсурдности обратного ему. Таким образом, был сделан шаг к становлению математики как дедуктивной науки, созданы некоторые предпосылки для ее аксиоматического построения.

Итак, философские рассуждения элеатов, с одной стороны, явились мощным толчком для принципиально новой постановки важнейших методологических вопросов математики, а с другой - послужили источником возникновения качественно новой формы обоснования математических знаний.

ДЕМОКРИТ

Аргументы Зенона вскрыли внутренние противоречия, которые имели место в сложившихся математических теориях. Тем самым факт существования математики был поставлен под сомнение. Какими же путями разрешались противоречия, выявленные Зеноном ?

Простейшим выходом из создавшегося положения бал отказ от абстракций в пользу того, что можно непосредственно проверить с помощью ощущений. Такую позицию занял софист Протагор. Он считал, что «мы не можем представить себе ничего прямого или круглого в том смысле, как представляет эти термины геометрия; в самом деле, круг касается прямой не в одной точке»[14]. Таким образом, из математики следует убрать как ирреальные: представления о бесконечном числе вещей, так как никто не может считать до бесконечности; бесконечную делимость, поскольку она неосуществима практически и т.д. Таким путем математику можно сделать неуязвимой для рассуждений Зенона, но при этом практически упраздняется теоретическая математика. Значительно сложнее было построить систему фундаментальных положений математики, в которой бы выявленные Зеноном противоречия не имели бы места. Эту задачу решил
Демокрит, разработав концепцию математического атомизма.

Демокрит был, по мнению Маркса, «первым энциклопедическим умом среди греков»[15]. Диоген Лаерций (III в. н.э.) называет 70 его сочинений, в которых были освещены вопросы философии, логики, математики, космологии, физики, биологии, общественной жизни, психологии, этики, педагогики, филологии, искусства, техники и другие. Аристотель писал о нем: «Вообще, кроме поверхностных изысканий, никто ничего не установил, исключая
Демокрита. Что же касается его, то получается такое впечатление, что он предусмотрел все, да и в методе вычислений он выгодно отличается от других»[16].

Вводной частью научной системы Демокрита была «каноника», в которой формулировались и обосновывались принципы атомистической философии. Затем следовала физика, как наука о различных проявлениях бытия, и этика.
Каноника входила в физику в качестве исходного раздела, этика же строилась как порождение физики. В философии Демокрита прежде всего устанавливается различие между «подлинно сущим» и тем, что существует только в «общем мнении». Подлинно сущими считались лишь атомы и пустота. Как подлинно сущее, пустота (небытие) есть такая же реальность, как атомы (бытие).
«Великая пустота» безгранична и заключает в себе все существующее, в ней нет ни верха, ни низа, ни края, ни центра, она делает прерывной материю и возможным ее движение. Бытие образуют бесчисленные мельчайшие качественно однородные первотельца, различающиеся между собой по внешним формам, размеру, положению и порядку, они далее неделимы вследствие абсолютной твердости и отсутствия в них пустоты и «по величине неделимы». Атомам самим по себе свойственно непрестанное движение, разнообразие которого определяется бесконечным разнообразием форм атомов. Движение атомов вечно и в конечном итоге является причиной всех изменений в мире.

Задача научного познания, согласно Демокриту, состоит в том, чтобы наблюдаемые явления свести к области «истинного сущего» и дать им объяснение исходя из общих принципов атомистики. Это может быть достигнуто посредством совместной деятельности ощущений и разума. Гносеологическую позицию Демокрита Маркс сформулировал следующим образом: «Демокрит не только не удалялся от мира, а, наоборот, был эмпирическим естествоиспытателем»[17]. Содержание исходных философских принципов и гносеологические установки определили основные черты научного метода
Демокрита: а) в познании исходить от единичного; б) любые предмет и явление разложимы до простейших элементов (анализ) и объяснимы исходя из них (синтез); в) различать существование «по истине» и «согласно мнению»; г) явления действительности - это отдельные фрагменты упорядоченного космоса, который возник и функционирует в результате действий чисто механической причинности.

Математика по праву должна считаться у Демокрита первым разделом собственно физики и следовать непосредственно за каноникой. В самом деле, атомы качественно однородны и их первичные свойства имеют количественный характер. Однако было бы неправильно трактовать учение Демокрита как разновидность пифагореизма, поскольку Демокрит хотя и сохраняет идею господства в мире математической закономерности, но выступает с критикой априорных математических построений пифагорейцев, считая, что число должно выступать не законодателем природы, а извлекаться из нее. Математическая закономерность выявляется Демокритом из явлений действительности, и в этом смысле он предвосхищает идеи математического естествознания. Исходные начала материального бытия выступают у Демокрита в значительной степени как математические объекты, и в соответствии с этим математике отводится видное место в системе мировоззрения как науке о первичных свойствах вещей. Однако включение математики в основание мировоззренческой системы потребовало ее перестройки, приведения математики в соответствие с исходными философскими положениями, с логикой, гносеологией, методологией научного исследования.
Созданная таким образом концепция математики, называемая концепцией математического атомизма, оказалась существенно отличной от предыдущих.

У Демокрита все математические объекты (тела, плоскости, линии, точки) выступают в определенных материальных образах. Идеальные плоскости, линии, точки в его учении отсутствуют. Основной процедурой математического атомизма является разложение геометрических тел на тончайшие листики
(плоскости), плоскостей - на тончайшие нитки (линии), линий - на мельчайшие зернышки (атомы). Каждый атом имеет малую, но ненулевую величину и далее неделим. Теперь длина линии определяется как сумма содержащихся в ней неделимых частиц. Аналогично решается вопрос о взаимосвязи линий на плоскости и плоскостей в теле. Число атомов в конечном объеме пространства не бесконечно, хотя и настолько велико, что недоступно чувствам. Итак, главным отличием учения Демокрита от рассмотренных ранее является отрицание им бесконечной делимости. Таким образом он решает проблему правомерности теоретических построений математики, не сводя их к чувственно воспринимаемым образам, как это делал Протагор. Так, на рассуждения
Протагора о касании окружности и прямой Демокрит мог бы ответить, что чувства, являющиеся отправным критерием Протагора, показывают ему, что чем точнее чертеж, тем меньше участок касания; в действительности же этот участок настолько мал, что не поддается чувственному анализу, а относится к области истинного познания.

Руководствуясь положениями математического атомизма, Демокрит проводит ряд конкретных математических исследований и достигает выдающихся результатов (например, теория математической перспективы и проекции). Кроме того, он сыграл, по свидетельству Архимеда, немаловажную роль в доказательстве Евдоксом теорем об объеме конуса и пирамиды. Нельзя с уверенностью сказать, пользовался ли он при решении этой задачи методами анализа бесконечно малых. А.О. Маковельский пишет: «Демокрит вступил на путь, по которому дальше пошли Архимед и Кавальери. Однако, подойдя вплотную к понятию бесконечно малого, Демокрит не сделал последнего решительного шага. Он не допускает безграничного увеличения числа слагаемых, образующих в своей сумме данный объем. Он принимает лишь чрезвычайно большое, не поддающееся исчислению вследствие своей огромности число этих слагаемых»[18].

Выдающимся достижением Демокрита в математике явилась также его идея о построении теоретической математики как системы. В зародышевой форме она представляет собой идею аксиоматического построения математики, которая затем была развита в методологическом плане Платоном и получила логически развернутое положение у Аристотеля.

ПЛАТОНОВСКИЙ ИДЕАЛИЗМ

Сочинения Платона (427-347 гг. до н.э.) - уникальное явление в отношении выделения философской концепции. Это высокохудожественное, захватывающее описание самого процесса становления концепции, с сомнениями и неуверенностью, подчас с безрезультатными попытками разрешения поставленного вопроса, с возвратом к исходному пункту, многочисленными повторениями и т.п. Выделить в творчестве Платона какой-либо аспект и систематически изложить его довольно сложно, так как приходится реконструировать мысли Платона из отдельных высказываний, которые настолько динамичны, что в процессе эволюции мысли порой превращаются в свою противоположность.

Платон неоднократно высказывал свое отношение к математике и она всегда оценивалась им очень высоко: без математических знаний «человек с любыми природными свойствами не станет блаженным»[19], в своем идеальном государстве он предполагал «утвердить законом и убедить тех, которые намереваются занять в городе высокие должности, чтобы они упражнялись в науке счисления»[20]. Систематическое широкое использование математического материала имеет место у Платона, начиная с диалога «Менон», где Платон подводит к основному выводу с помощью геометрического доказательства.
Именно вывод этого диалога о том, что познание есть припоминание, стал основополагающим принципом платоновской гносеологии.

Значительно в большей мере, чем в гносеологии, влияние математики обнаруживается в онтологии Платона. Проблема строения материальной действительности у Платона получила такую трактовку: мир вещей, воспринимаемый посредством чувств, не есть мир истинно существующего; вещи непрерывно возникают и погибают. Истинным бытием обладает мир идей, которые бестелесны, нечувственны и выступают по отношению к вещам как их причины и образы, по которым эти вещи создаются. Далее, помимо чувственных предметов и идей он устанавливает математические истины, которые от чувственных предметов отличаются тем, что вечны и неподвижны, а от идей - тем, что некоторые математические истины сходна друг с другом, идея же всякий раз только одна. У Платона в качестве материи началами являются большое и малое, а в качестве сущности - единое, ибо идеи (они же числа) получаются из большого и малого через приобщение их к единству. Чувственно воспринимаемый мир, согласно Платону, создан Богом. Процесс построения космоса описан в диалоге «Тимей». Ознакомившись с этим описанием, нужно признать, что Создатель был хорошо знаком с математикой и на многих этапах творения существенно использовал математические положения, а порой и выполнял точные вычисления.

Посредством математических отношений Платон пытался охарактеризовать и некоторые явления общественной жизни, примером чего может служить трактовка социального отношения «равенство» в диалоге «Горгий» и в «Законах». Можно заключить, что Платон существенно опирался на математику при разработке основных разделов своей философии: в концепции «познание - припоминание», учении о сущности материального бытия, об устройстве космоса, в трактовке социальных явлений и т.д. Математика сыграла значительную роль в конструктивном оформлении его философской системы. Так в чем же заключалась его концепция математики?

Согласно Платону, математические науки (арифметика, геометрия, астрономия и гармония) дарованы человеку богами, которые «произвели число, дали идею времени и возбудили потребность исследования вселенной»[21].
Изначальное назначение математики в том, чтобы «очищался и оживлялся тот орган души человека, расстроенный и ослепленный иными делами»[22], который
«важнее, чем тысяча глаз, потому что им одним созерцается истина»[23].
«Только никто не пользуется ею (математикой) правильно, как наукою, влекущей непременно к сущему»[24]. «Неправильность» математики Платон видел прежде всего в ее применимости для решения конкретных практических задач.
Нельзя сказать, чтобы он вообще отрицал практическую применимость математики. Так, часть геометрии нужна для «расположения лагерей», «при всех построениях как во время самих сражений, так и во время походов»[25].
Но, по мнению Платона, «для таких вещей ...достаточна малая часть геометрических и арифметических выкладок, часть же их большая, простирающаяся далее, должна ...способствовать легчайшему усвоению идеи блага»[26]. Платон отрицательно отзывался о тех попытках использования механических методов для решения математических задач, которые имели место в науке того времени. Его неудовлетворенность вызывало также принятое современниками понимание природы математических объектов. Рассматривая идеи своей науки как отражение реальных связей действительности, математики в своих исследованиях наряду с абстрактными логическими рассуждениями широко использовали чувственные образы, геометрические построения. Платон всячески старается убедить, что объекты математики существуют обособленно от реального мира, поэтому при их исследовании неправомерно прибегать к чувственной оценке.

Таким образом, в исторически сложившейся системе математических знаний, Платон выделяет только умозрительную, дедуктивно построенную компоненту и закрепляет за ней право называться математикой. История математики мистифицируется, теоретические разделы резко противопоставляются вычислительному аппарату, до предела сужается область приложения. В таком искаженном виде некоторые реальные стороны математического познания и послужили одним из оснований для построения системы объективного идеализма
Платона. Ведь сама по себе математика к идеализму вообще не ведет, и в целях построения идеалистических систем ее приходится существенно деформировать.

Вопрос о влиянии, оказанном Платоном на развитие математики, довольно труден. Длительное время господствовало убеждение, что вклад Платона в математику был значителен. Однако более глубокий анализ привел к изменению этой оценки. Так, О. Нейгебауэр пишет: «Его собственный прямой вклад в математические знания, очевидно, был равен нулю... Исключительно элементарный характер примеров математических рассуждений, приводимых
Платоном и Аристотелем, не подтверждает гипотезы о том, что Евдокс или
Теэтет чему-либо научились у Платона... Его совет астрономам заменить наблюдения спекуляцией мог бы разрушить один из наиболее значительных вкладов греков в точные науки»[27]. Такая аргументация вполне убедительна; можно также согласиться и с тем, что идеалистическая философия Платона в целом сыграла отрицательную роль в развитии математики. Однако не следует забывать о сложном характере этого воздействия.

Платону принадлежит разработка некоторых важных методологических проблем математического познания: аксиоматическое построение математики, исследование отношений между математическими методами и диалектикой, анализ основных форм математического знания. Так, процесс доказательства необходимо связывает набор доказанных положений в систему, в основе которой лежат некоторые недоказуемые положения. Тот факт, что начала математических наук «суть предположения», может вызвать сомнение в истинности всех последующих построений. Платон считал такое сомнение необоснованным.
Согласно его объяснению, хотя сами математические науки, «пользуясь предположениями, оставляют их в неподвижности и не могут дать для них основания»[28], предположения находят основания посредством диалектики.
Платон высказал и ряд других положений, оказавшихся плодотворными для развития математики. Так, в диалоге «Пир» выдвигается понятие предела; идея выступает здесь как предел становления вещи.

Критика, которой подвергались методология и мировоззренческая система
Платона со стороны математиков, при всей своей важности не затрагивала сами основы идеалистической концепции. Для замены разработанной Платоном методологии математики более продуктивной системой нужно было подвергнуть критическому разбору его учение об идеях, основные разделы его философии и как следствие этого - его воззрение на математику. Эта миссия выпала на долю ученика Платона - Аристотеля.

СИСТЕМА ФИЛОСОФИИ МАТЕМАТИКИ АРИСТОТЕЛЯ

К. Маркс назвал Аристотеля (384-322 гг. до н.э.) «величайшим философом древности»[29]. Основные вопросы философии, логики, психологии, естествознания, техники, политики, этики и эстетики, поставленные в науке
Древней Греции, получили у Аристотеля полное и всестороннее освещение. В математике он, по-видимому, не проводил конкретных исследований, однако важнейшие стороны математического познания были подвергнуты им глубокому философскому анализу, послужившему методологической основой деятельности многих поколений математиков.

Ко времени Аристотеля теоретическая математика прошла значительный путь и достигла высокого уровня развития. Продолжая традицию философского анализа математического познания, Аристотель поставил вопрос о необходимости упорядочивания самого знания о способах усвоения науки, о целенаправленной разработке искусства ведения познавательной деятельности, включающего два основных раздела: «образованность» и «научное знание дела».
Среди известных сочинений Аристотеля нет специально посвященных изложению методологических проблем математики. Но по отдельным высказываниям, по использованию математического материала в качестве иллюстраций общих методологических положений можно составить представление о том, каков был его идеал построения системы математических знаний.

Исходным этапом познавательной деятельности, согласно Аристотелю, является обучение, которое «основано на (некотором) уже ранее имеющемся знании... Как математические науки, так и каждое из прочих искусств приобретается (именно) таким способом»[30]. Для отделения знания от незнания Аристотель предлагает проанализировать «все те мнения, которые по- своему высказывали в этой области некоторые мыслители»[31] и обдумать возникшие при этом затруднения. Анализ следует проводить с целью выяснения четырех вопросов: «что (вещь) есть, почему (она) есть, есть ли (она) и что
(она) есть»[32].

Основным принципом, определяющим всю структуру «научного знания дела»[33], является принцип сведения всего к началам и воспроизведения всего из начал. Универсальным процессом производства знаний из начал, согласно Аристотелю, выступает доказательство. «Доказательством же я называю силлогизм, - пишет он, - который дает знания». Изложению теории доказательного знания полностью посвящен "Органон" Аристотеля. Основные положения этой теории можно сгруппировать в разделы, каждый из которых раскрывает одну из трех основных сторон математики как доказывающей науки:
«то, относительно чего доказывается, то, что доказывается и то, на основании чего доказывается»[34]. Таким образом, Аристотель дифференцированно подходил к объекту, предмету и средствам доказательства.

Существование математических объектов признавалось задолго до
Аристотеля, однако пифагорейцы, например, предполагали, что они находятся в чувственных вещах, платоники же, наоборот, считали их существующими отдельно. Согласно Аристотелю:

1. В чувственных вещах математические объекты не существуют, так как
«находиться в том же самом месте два тела не в состоянии»[35].

2. «Невозможно и то, чтобы такие реальности существовали обособленно»[36].

Аристотель считал предметом математики «количественную определенность и непрерывность». В его трактовке «количеством называется то, что может быть разделено на составные части, каждая из которых ...является чем-то одним, данным налицо. То или другое количество есть множество, если его можно счесть, это величина, если его можно измерить»[37]. Множеством при этом называется то, «что в возможности (потенциально) делится на части не непрерывные, величиною то, что делится на части непрерывные»[38]. Прежде чем дать определение непрерывности, Аристотель рассматривает понятие бесконечного, так как «оно относится к категории количества» и проявляется прежде всего в непрерывном. «Что бесконечное существует, уверенность в этом возникает у исследователей из пяти оснований: из времени (ибо оно бесконечно); из разделения величин..; далее, только таким образом не иссякнут возникновение и уничтожение, если будет бесконечное, откуда берется возникающее. Далее, из того, что конечное всегда граничит с чем- нибудь, так как необходимо, чтобы одно всегда граничило с другим. Но больше всего -...на том основании, что мышление не останавливается: и число кажется бесконечным, и математические величины»[39]. Существует ли бесконечное как отдельная сущность или оно является акциденцией величины или множества? Аристотель принимает второй вариант, так как «если бесконечное не есть ни величина, ни множество, а само является сущностью..., то оно будет неделимо, так как делимое будет или величиной, или множеством. Если же оно не делимо, оно не бесконечно в смысле непроходимого до конца»[40]. Невозможность математического бесконечного как неделимого следует из того, что математический объект - отвлечение от физического тела, а «актуально неделимое бесконечное тело не существует»[41]. Число «как что-то отдельное и в то же время бесконечное»[42] не существует, ведь «...если возможно пересчитать счислимое, то будет возможность пройти до конца и бесконечное»[43]. Таким образом, бесконечность здесь в потенции существует, актуально же - нет.

Опираясь на изложенное выше понимание бесконечного, Аристотель определяет непрерывность и прерывность. Так, «непрерывное есть само по себе нечто смежное. Смежное есть то, что, следуя за другим, касается его»[44].
Число как типично прерывное (дискретное) образование формируется соединением дискретных, далее неделимых элементов - единиц. Геометрическим аналогом единицы является точка; при этом соединение точек не может образовать линию, так как «точкам, из которых было бы составлено непрерывное, необходимо или быть непрерывными, или касаться друг друга»[45]. Но непрерывными они не будут: «ведь края точек не образуют чего- нибудь единого, так как у неделимого нет ни края, ни другой части»[46].
Точки не могут и касаться друг друга, поскольку касаются «все предметы или как целое целого, или своими частями, или как целое части. Но так как неделимое не имеет частей, им необходимо касаться целиком, но касающееся целиком не образует непрерывного»[47].

Невозможность составления непрерывного из неделимых и необходимость его деления на всегда делимые части, установленные для величины, Аристотель распространяет на движение, пространство и время, обосновывая (например, в
«Физике») правомерность этого шага. С другой стороны, он приходит к выводу, что признание неделимых величин противоречит основным свойствам движения.
Выделение непрерывного и прерывного как разных родов бытия послужило основой для размежевания в логико-гносеологической области, для резкого отмежевания арифметики от геометрии.

«Началами... в каждом роде я называю то, относительно чего не может быть доказано, что оно есть. Следовательно, то, что обозначает первичное и из него вытекающее, принимается. Существование начал необходимо принять, другое - следует доказать. Например, что такое единица или что такое прямое или что такое треугольник (следует принять); что единица и величина существует, также следует принять, другое - доказать»[48]. В вопросе о появлении у людей способности познания начал Аристотель не соглашается с точкой зрения Платона о врожденности таких способностей, но и не допускает возможности приобретения их; здесь он предлагает следующее решение:
«необходимо обладать некоторой возможностью, однако не такой, которая превосходила бы эти способности в отношении точности»[49]. Но такая возможность, очевидно, присуща всем живым существам; в самом деле, они обладают прирожденной способностью разбираться, которая называется чувственным восприятием. Формирование начал идет «от предшествующего и более известного для нас»[50], то есть от того, что ближе к чувственному восприятию к «предшествующему и более известному безусловно»[51] (таким является общее). Аристотель дает развернутую классификацию начал, исходя из разных признаков.

Во-первых, он выделяет «начала, из которых (что-либо) доказывается, и такие, о которых (доказывается)»[52]. Первые «суть общие (всем начала)», вторые - «свойственные (лишь данной науке), например, число, величина»[53].
В системе начал общие занимают ведущее место, но их недостаточно, так как
«среди общих начал не может быть таких, из которых можно было бы доказать все»[54]. Этим и объясняется, что среди начал должны быть «одни свойственны каждой науке в отдельности, другие - общие всем»[55]. Во-вторых, начала делятся на две группы в зависимости от того, что они раскрывают: существование объекта или наличие у него некоторых свойств. В-третьих, комплекс начал доказывающей науки делится на аксиомы, предположения, постулаты, исходные определения.

Выбор начал у Аристотеля выступает определяющим моментом построения доказывающей науки; именно начала характеризуют науку как данную, выделяют ее из ряда других наук. «То, что доказывается», можно трактовать очень широко. С одной стороны, это элементарный доказывающий силлогизм и его заключения. Из этих элементарных процессов строится здание доказывающей науки в виде отдельно взятой теории. Из них же создается и наука как система теорий. Однако не всякий набор доказательств образует теорию. Для этого он должен удовлетворять определенным требованиям, охватывающим как содержание доказываемых предложений, так и связи между ними. В пределах же научной теории необходимо имеет место ряд вспомогательных определений, которые не являются первичными, но служат для раскрытия предмета теории.

Хотя вопросы методологии математического познания и не были изложены
Аристотелем в какой-то отдельной работе, но по содержанию в совокупности они образуют полную систему. В основе философии математики Аристотеля лежит понимание математических знаний как отражения объективного мира. Эта установка сыграла важную роль в борьбе Аристотеля с платоновским идеализмом; ведь «если в явлениях чувственного мира не находится вовсе математическое, то каким образом возможно, что к ним прилагаются его свойства?» - писал он. Разумеется, материализм Аристотеля был непоследовательным, в целом его воззрения в большей степени соответствовали потребностям математического познания, сем взгляды Платона. В свою очередь математика была для Аристотеля одним из источников формирования ряда разделов его философской системы.


Список использованной литературы:

1. Афанасьев В.Г. Основы философских знаний, М., Мысль, 1987.
2. Беляев Е.А., Перминов В.Я. Философские и методологические проблемы математики. - М.: МГУ, 1981.
3. Большая советская энциклопедия. - М., т.7, 1972.
4. Бурбаки Н. Очерки по истории математики. - М., 1963.
5. Введение в философию, 2т. - М., 1989.
6. Глейзер Г.И. История математики в школе 7-8 классы. - М.: Просвещение,
1982.
7. Диалектика и частные науки / под ред. Н.М. Дмитренко и др. - Ленинград -
Брянск, 1972.
8. Жуков Н.И. Философские основания математики. - Минск: Университетское,
1990.
9. Кедров Б.М. Предмет и взаимосвязь естественных наук. - М., Наука, 1967.
10. Кедровский О.И. Взаимосвязь философии и математики в процессе исторического развития. От Фалеса до эпохи Возрождения. - Киев, 1973.
11. Кедровский О.И. Взаимосвязь философии и математики в процессе исторического развития. От эпохи Возрождения до XX века. - Киев, Вища школа, 1974.
12. Краткий очерк истории философии/ под ред. М.Т. Иовчука и др. - М.:
Мысль, 1971.
13. Малинников С.Г. Автореферат диссертации на соискание ученой степени кандидата философских наук. - С.-Пб., 1995.
14. Молодший В.Н. Очерки по философским вопросам математики. - М.,
Просвещение, 1969.
15. Маркс К. И Энгельс Ф. Соч., 2 тома, 1967.
16. Слуцкий М.С. Взаимосвязь философии и естествознания. - М., Высшая школа, 1973.
17. Философская энциклопедия. - М., Советская энциклопедия, 1960.
18. Философские проблемы оснований физико-математического знания, АН УССР,
Институт философии. - Киев: Наук. Думка, 1989.
-----------------------
[1] Г.И. Глейзер. История математики в школе 7-8 классы. М.: Просвещение,
1982 г., стр. 213.
[2] Большая советская энциклопедия. - М.: Т.7, 1972 г.
[3] Г.И Глейзер. История математики в школе 7-8 классы. М.: Просвещение,
1982 г., стр. 176.
[4] И.Я Депман. Рассказы по математике. - Ленинград: Детгиз, 1954 г., стр.
16.
[5] О.И. Кедровский. Взаимосвязь философии и математики в процессе исторического развития. От Фалеса до эпохи Возрождения. - Киев, 1973 г., стр. 59.
[6] Большая советская энциклопедия. - М.: Т.18, 1972 г.
[7] Там же, стр. 237.
[8] Н. Бурбаки. Очерки по истории математики. - М., 1963 г., стр. 77.
[9] Г.И. Глейзер. История математики в школе 7-8 классы. М.: Просвещение,
1982 г., стр. 126.
[10] Большая советская энциклопедия. - М.: Т.18, 1972 г.
[11] О.И. Кедровский. Взаимосвязь философии и математики в процессе исторического развития. От Фалеса до эпохи Возрождения. - Киев, 1973 г., стр. 59.
[12] Большая советская энциклопедия. - М., Т.4, стр. 389.
[13] Большая советская энциклопедия. - М.: Т.7, 1972 г.
[14] В.Н. Молодший. Очерки по философским вопросам математики. - М.,
Просвещение, 1969 г., стр. 249.
[15] Диалектика и частные науки/ под ред. Дмитренко и др. - Ленинград-
Брянск, 1972 г.
[16] Диалектика и частные науки/ под ред. Дмитренко и др. - Ленинград-
Брянск, 1972 г.
[17] Диалектика и частные науки/ под ред. Дмитренко и др. - Ленинград-
Брянск, 1972 г.
[18] Философские проблемы оснований физико-математического знания, АНУССР,
Институт философии. - Киев: Наук.думка, 1989 г.
[19] Б.М. Кедров. Предмет и взаимосвязь естественных наук. - М., Наука,
1967 г.
[20] Б.М. Кедров. Предмет и взаимосвязь естественных наук. - М., Наука,
1967 г.
[21] Введение в философию, 2т., - М., 1989 г.
[22] Там же.
[23] Введение в философию, 2т., - М., 1989 г.
[24] Там же.
[25] Там же.
[26] Введение в философию, 2т., - М., 1989 г.
[27] Е.А. Беляев, В.Я. Перминов. Философские и методологические проблемы математики. - М.: МГУ, 1981 г.
[28] Е.А. Беляев, В.Я. Перминов. Философские и методологические проблемы математики. - М.: МГУ, 1981 г.
[29] К. Маркс и Ф. Энгельс. Соч., т. 20, стр. 14.
[30] В.Г. Афанасьев. Основы философских знаний. М.: Мысль, 1987 г.
[31] В.Г. Афанасьев. Основы философских знаний. М.: Мысль, 1987 г.
[32] В.Г. Афанасьев. Основы философских знаний. М.: Мысль, 1987 г.
[33] Краткий очерк истории философии/ под ред. М.Т. Иовчука, Т.И.
Ойзермана, И.Я. Щипанова. М.: Мысль, 1971 г.
[34] Там же, стр. 456.
[35] Философские проблемы оснований физико-математического знания. АН УССР,
Институт философии. - Киев: Наук.думка, 1989 г.
[36] Философские проблемы оснований физико-математического знания. АН УССР,
Институт философии. - Киев: Наук.думка, 1989 г.
[37] Там же.
[38] Н.И. Жуков. Философские основания математики. - Минск:
Университетское, 1990 г.
[39] Там же.
[40] Н.И. Жуков. Философские основания математики. - Минск:
Университетское, 1990 г.
[41] Там же.
[42] Н.И. Жуков. Философские основания математики. - Минск:
Университетское, 1990 г.
[43] Краткий очерк истории философии/ под ред. М.Т. Иовчука, Т.И.
Ойзермана, И.Я. Щипанова. М.: Мысль, 1971 г.
[44] Там же.
[45] Там же.
[46] Там же.
[47] Там же.
[48] Г.И. Глейзер. История математики в школе 7-8 классы. М.: Просвещение,
1982 г, стр. 100.
[49] Там же, стр. 101.
[50] Там же, стр.101.
[51] Там же, стр. 102.
[52] Там же, стр. 103.
[53] Там же, стр. 103.
[54] Там же, стр. 104.
[55] В.Г. Афанасьев. Основы философских знаний. - М.: Мысль, 1987 г., стр.
89.



Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.