рефераты скачать

МЕНЮ


История системного подхода в науке и технике

На основании своего закона кратных отношений, а также закона постоянства состава Пруста Дальтон в 1803-1804 гг. выдвинул свою теорию атомного строения (химическую атомистику). Благодаря этой теории представления об атоме как носителе химических свойств впервые начали приобретать конкретный характер.



3.19 Закон Авогадро о постоянстве количества молекул в данном объеме


Отправляясь от атомистики Дальтона, итальянский физик и химик А. Авогадро (1776-1856) сформулировал в 1811 г. теорию молекулярного строения вещества. Он разработал метод определения молекулярных масс и с его помощью вычислил в течение 1810-х годов атомные массы кислорода, углерода и многих других элементов, а также открыл закон, согласно которому в одинаковых объемах газов содержится одинаковое количество молекул (при одной и той же температуре и давлении). Он уже в определенном смысле явился предшественником Д.И. Менделеева: так, Авогадро первым установил серию элементов, которые впоследствии вошли в периодическую систему как группа (точнее, главная подгруппа пятой группы. Это были азот, фосфор, мышьяк и сурьма, аналогию в свойствах которых Авогадро подметил).


3.20 Периодический закон и периодическая система химических элементов Менделеева


Перечисленные открытия заложили основу для атомно-молекулярной теории строения вещества, которая получила законченный вид в 1860-х годах, когда А.М. Бутлеров (1828-1886) создал теорию химического строения, а Д.И. Менделеев (1834-1907) - свою систему элементов. Последняя не только представляла собой классификацию элементов по объективным критериям, но и дала новый пример предсказательной силы науки: на основании своей системы Менделеев получил возможность предсказывать открытие новых элементов. Так, им заранее были установлены свойства скандия, германия, галия, эмпирически открытых лишь впоследствии.

Периодическая система Менделеева представляет собой развернутую форму его же периодического закона, первое четкое изложение которого было дано Менделеевым в феврале 1869 г. Сущность этого закона в трактовке самого Менделеева заключается в том, что физические и химические свойства элементов стоят в периодической зависимости от их атомного веса. В современном понимании эта трактовка должна быть уточнена: свойства элементов зависят не столько от атомного веса, сколько от заряда ядра и определяемого этим зарядом числа электронов в атоме, которое равно порядковому номеру в системе Менделеева. Но в целом Менделеев был прав, называя свою таблицу естественной системой элементов. Она впервые отразила объективное распространение всех известных тогда элементов соответственно их свойствам, причем среди этих свойств выделена одно первичное (атомный вес, мы бы сейчас сказали - заряд ядра) и многочисленные зависимые от него вторичные.

Уже из планетарной модели атома Резерфорда и из факта нейтральности (нулевого заряда) атома в целом вытекло, что положительный заряд ядра является кратным отрицательного заряда электрона. На основе этого соотношения и была в 1913 г. выдвинута гипотеза, впоследствии оправдавшаяся, что число электронов в атоме равно порядковому номеру соответствующего элемента. После усовершенствования резерфордовской планетарной модели Бором выяснилась причина периодичности в таблице Менделеева. Это также был один из примеров преемственности между классическим и постклассическим состоянием науки. Согласно модели Бора, электроны движутся вокруг ядра лишь по “разрешенным” стационарным орбитам. Элементы с одним, двум и т.д. электронами в наружном слое, наиболее определяющем физические и химические свойства элемента, в целом повторяют свойства элементов с одним, двумя и т.д. электронами в наружном слое, но имеющих притом на один или несколько слоев (разрешенных орбит) электронов меньше.


3.21 Особенности постклассической химии


Современная (постклассическая) химия, продолжая оставаться наукой о превращениях и свойствах веществ, проявляющихся при трансформации их структуры на атомно-молекулярном уровне, приобрела в то же время новые особенности по сравнению с классическим периодом. Прежде всего, как сказано, она опирается на квантовую механику и учение о строении атома. Под этим углом зрения переосмысливаются все классические понятия. Например, валентность по-прежнему трактуется как количественная мера способности элемента к образованию химических связей, но в XX в. связи эти трактуются как электростатические силы, причем выяснилось, что упомянутая способность образовывать связи зависит от характера внешней (валентной) оболочки атомов (см.1.3.6). Конечно, для этого необходимы были по меньшей мере открытие электрона и боровская планетарная модель атома.

Еще недавно не имели применения, да почти что и не были известны изотопы - разновидности одного и того же химического элемента, имеющие один номер в периодической таблице, но отличающиеся друг от друга по атомной массе. Порядковый номер (число протонов в ядре) у изотопов одного и того ж элемента одинаков, но имеются добавочные или недостающие нейтроны, так что атомная масса получается неодинаковая. Первые изотопы были получены в процессе радиоактивного распада урана и тория в 1906-1907 гг., что явилось важным компонентов происходившей тогда тотальной перестройки естественнонаучных концепций. Оказалось, что порядковый номер элемента в менделеевской таблице является значительно более сложным показателем, чем полагали ранее, и под ним могут скрываться разновидности этого элемента с неодинаковыми свойствами, хотя и с одним зарядом ядра (конечно, такие формулировки смогли появиться только после принятия планетарной модели атома, каковая и была предложена в 1911 г.Э. Резерфордом, хотя еще и в несовершенной форме по сравнению с раннеквантовой моделью Бора, см.2.1.). Вскоре изотопы были открыты и у стабильных элементов, раньше всего у неона, а в 1934 г.И. Кюри и Ф. Жолио получили изотопы искусственным путем (а именно, отсутствующие в природе радиоактивные изотопы азота 12N, кремния 28S; и фосфора 30Р - слева вверху стали писать массовое число изотопа). Затем путем ядерных реакций синтезировали еще много изотопов, в основном радиоактивных.

3.22 Эволюционная химия


Широко распространилась за последние годы и представляет уже отчасти переход к биологии концепция эволюционной химии, основанная на введении в химию идеи саморазвития путем восхождения на более высокие уровни сложности и упорядоченности. Эволюция понимается в данном случае как спонтанный - в природе или специально подобранных (чтобы сделать минимальным участие человека) условиях - синтез новых химических соединений, являющихся более сложными по сравнению с исходными материалами. Сюда же примыкает моделирование каталитических систем, к которому мы вернемся в связи с проблемами биологии. Для химического же уровня организации несомненно, что раннему этапу возникновения жизни предшествовали сложные молекулярные процессы, которые можно отнести к категории химической эволюции и без которых жизнь не возникла бы.

На этом этапе в атмосфере Земли взаимодействовали сначала очень простые углеродосодержащие и безуглеродные вещества (вода, углекислый газ, аммиак, сероводород, цианистый водород, фосфорная кислота и т.д.), затем получившиеся из них малые биомолекулы (мономеры: сахара, аминокислоты, пурины, пиримидины, моносахариды и т.п.), затем сложные органические вещества и биополимеры (липиды, полисахариды, белки, нуклеотиды и др.) - и это уже была преджизнь, переход к живому веществу. Механизмы этого процесса перехода во многом неясны и представляют собой одну из тех наиболее увлекательных областей исследования, которые обещают обогатить естествознание новыми и углубленными концепциями. Для них отчасти уже готовы наименования: теория самоорганизации, биогенез, синергетика и т.д. Однако мы еще далеки от редукции реальных эволюционных и биологических процессов к химической основе, если такая редукция вообще возможна.

Редукцию химических концепций и в целом химического уровня организации к физическому можно считать практически состоявшейся, как можно видеть, в частности, на примере валентности, периодического закона Менделеева (см. выше) и многих других концепций и категорий. Редукция биологического уровня к химическому, видимо, представляет собой гораздо более трудную задачу, нежели редукция химического уровня к физическому. Многие применяемые в биологии понятия не имеют аналогии на низших уровнях организации. Таковы понятия органа, стимула, пола, инстинкта и др. Тем не менее во все возрастающей степени в биологии используется концептуальный аппарат физики и химии, а потому концепции современной биологии необходимо рассматривать как в их специфике, так и в контексте физических и химических данных и категорий.

3.23 Биологические явления. Формы и уровни жизни


Многообразие имеющихся на Земле живых систем поразительноЧасти организмов (клетки, ткани, органы), далее сами организмы, популяции, нередко рассматриваются в виде особых, всевозрастающих в отношении сложности объектов - уровней организации. “Лестница" этих уровней представляет собой часть более общей шкалы повышения организации в природе, начиная от атомов и молекул и кончая человеком, человеческим обществом и ноосферой (см. ниже).

В плане построения четкой картины многоуровневости живой природы в настоящее время наиболее адекватным представляется выделение следующих уровней: (1) молекулярного, составляющего предмет молекулярной биологии; (2) субклеточного - органелл и других внутриклеточных структур; (3) клеточного; (4) тканевого; (5) органного; (6) организменного; (7) популяционного - как сказано, ключевого с точки зрения СТЭ; (8) видового (сюда же примыкают уровни более высоких систематических единиц: рода, семейства, класса и т.д.); (9) биогеоценотического и (10) биосферного. Два последних уровня включают в себя не только организмы, но и участки земной поверхности и вообще местообитания организмов и будут рассмотрены ниже.

3.24 Специфика феномена жизни


Отличительные особенности живых существ заключаются, во-первых, в их составе, во-вторых, в строении и функциях. По составу они относятся к тому региону материального бытия, в основе которого лежат органические соединения. Какие именно, есть разные мнения. Раньше считали, что в основе жизни лежат белки; однако сейчас представляется более вероятным (как мы увидим ниже, при изучении генетических концепций), что еще важнее нуклеиновые кислоты - биополимеры построенные из нуклеотидов (азотистых оснований - пуриновых и пиримидиновых), углеводов и остатка фосфорной кислоты и лежащие в основе процессов хранения и передачи негенетической информации, т.е. информации, передающейся от одного поколения организмов к другому. Белки важны в осуществлении самых разнообразных функций в течение онтогенеза. Но при передаче признаков по наследству, а значит, и при филогенезе их роль сравнительно с нуклеиновыми кислотами пассивна, она лишь реализует программу, заложенную в последних. Теоретически возможны, например, на других планетах, и формы жизни, основанные на каких-либо других соединениях, например, не углеродных, а кремниевых. Сейчас для описания феномена жизни в наиболее общем виде берут за основу чаще всего не состав, а функции и структуру живых объектов как систем.

Под этим углом зрения первостепенными для определения некоторой системы как живого организма являются ее целостность; далее, уже упомянутый факт онтогенеза (согласно теории эволюции, также и филогенеза - исторического, т.е. в геологическом времени, формирование видов, родов, классов и других систематических групп организмов); обмен веществ и энергии с окружающей средой; способность целесообразно реагировать на ее изменения; сложность (высокоупорядоченность) строения; размножение. Взятые порознь, все эти аспекты специфики живого не являются абсолютными. Так, в определенной мере целостность характерна уже для кристаллов; в процессе кристаллизации в растворах, когда около “зародышевых” центров в течение определенного времени образуются “взрослые" кристаллы, с основанием можно видеть нечто подобное онтогенезу, т.е. индивидуальному развитию. Видимо, этот процесс в каких-то формах, возможно, напоминающих современные вирусы, также и исторически предшествовал появлению типичной жизни. Обмен веществ и энергии (иногда в том же смысле, т.е. как осуществляющих этот обмен, говорят о живых системах как открытых) тоже не столь уникальный случай: открытых систем и вне жизни много (например, газовые оболочки гигантских планет, где нет жизни, но идут потоки вещества и энергии к поверхности планеты и в космос). Вообще неорганические (“косные”) системы весьма нередко обмениваются (хотя бы в элементарной форме) веществом и энергией со своей средой и реагируют на ее изменения, и если это реагирование трудно определить как “целесообразное”, то по крайней мере есть системы, определенным образом “направленные" на поддержание своего равновесия: например, смесь уксусной кислоты с ее же натриевой солью или вообще буферные растворы, сохраняющие в известных рамках при добавлении воды, кислот или оснований на одном и том же уровне свою важнейшую характеристику - кислотность.

В то же время говорить о целесообразности реагирования организмов можно далеко не всегда: сталкиваясь с непривычными стимулами, они вполне могут поступать себе во вред. Вспомним о мотыльках, летящих на огонь, или о “самоубийствах” китов, выбрасывающихся на берег. Как раз устойчивость (к внешним воздействиям) параметров внутренней седы организма, реализуемая на основе системы обратных связей - гомеостаз - является более отчетливой характеристикой живых систем. Примером гомеостаза может служить выравнивание артериального давления после того, как изменение давления воспринимается барорецепторами сосудов, те передают сигнал в мозговые центры, откуда другой сигнал направляется к гладкой мускулатуре сосудов и снижает ее тонус, а это в свою очередь сигнализируется в мозг, который прекращает посылать расслабляющие импульсы. Не только организмам, но и другим живым системам свойствен гомеостаз: генетический гомеостаз представляет собой условие существования популяций, он заключается в поддержании (при возникающем равновесии внешнем воздействии) их генетической структуры. Однако как момент в определении специфики жизни гомеостаз немного дает, ибо присущ, как мы видели, и чисто химическим системам. Он встречается и в физических и технических системах: известен сконцентрированный У.Р. Эшби в 1948 г. “гомеостат” - система из четырех магнитов с перекрестными обратными связями. При отклонении системы от равновесного состояния магниты перемещаются случайным образом, “отыскивая” новое равновесное положение. Гомеостат Эшби мог даже до известной степени обучаться, компенсируя частичную поломку и восстанавливая связи нарушенные под влиянием изменений в среде, т.е. проявлял зачаточную целесообразность. Сложность тоже понятие относительное: была ли Вселенная в целом до появления жизни проще, чем какой-нибудь бактериофаг?

Более специфично для жизни явление размножения - воспроизведение себе подобных. Однако и ему есть аналогии в неживой природе: размножение кристаллов в насыщенном растворе, а также деление атомного ядра. При поглощении нейтрона ядра атома урана меняет форму, образуется “шейка”, а после ее уточнения и разрыва - два разлетающихся осколка, которые в свою очередь испускают нейтроны и т.д., причем все эти нейтроны подобны первому во всяком случае больше, чем организмы своему прародителю. При бета-распаде (распаде атомного ядра, сопровождающемся вылетом из него бета-частицы - электрона или позитрона) увеличивает число протонов или нейтронов, в зависимости от разновидности распада (b - или b+).

Это формальное возражение следует иметь в виду, тем не менее, по существу размножение представляет собой достаточно оригинальное свойство именно живого: “достаточно" для того, чтобы быть положенным в основу определения жизни. Вот один из вариантов такого определения: “жизнь есть форма существования высокоупорядоченных открытых систем, способных к целесообразной реакции и к размножению”. С древнейших времен, как только люди стали пытаться определить жизнь в отличие от всего остального, они опирались на этот признак. Что заповедует в Библии Бог живым существам, творя их? Не реагировать ли, не обмениваться ли веществом и энергией со средой, не быть сверхсложными? Нет, но: “плодитесь и размножайтесь”. Отсюда можно видеть, что с самого начала этот признак как очевидно важный, в том числе и практически, наиболее привлекал внимание. По истечении тысячелетий он не стал менее важен, но постигнул научно и стал предметом рассмотрения наиболее, пожалуй, специфической из биологических дисциплин: генетики, науки о наследственности временного естествознания, появление первых организмов на Земле, стало возможным как заключительный этап химической эволюции.

Развитие современной генетики началось одновременно с развитием других отраслей постклассического естествознания - в первых годах XX в., с переоткрытия несправедливо забытых перед тем законов Менделя (1900 г.) и введения в 1909 г. понятия “ген” (элементарная единица наследственности; как позднее выяснилось - отрезок молекулы нуклеиновой кислоты).Г. Мендель (1822-1884) в своей классической работе 1865 г. “Опыты над растительными гибридами" не употреблял, конечно, этой современной терминологии, но открыл существеннейшие закономерности наследственной передачи: независимость комбинирования генов (он писал: “наследственных факторов”), рецессивность и доминирование (см. ниже). По терминологии XX в., каждый ген лежит в основе какого-либо признака (впрочем, есть случаи определения признака несколькими генами и влияния гена на несколько признаков - упомянем об этом для полноты картины, но абстрагируемся от этих случаев). Гены и соответственно признаки при наследственной передаче дискретны и передаются независимо один от другого.

3.25 Теория эволюции Дарвина и ее синтез с генетикой


Генетика в тех ее формах, какие она приобрела в первую половину XX столетия, удачно объясняла постоянство наследственной природы организма, но в меньшей степени эффективно давала интерпретацию изменений этой природы. Между тем независимо от генетики (так сложилось первоначально) такую интерпретацию давало эволюционное учение и в особенности возникший в середине XIX в. дарвинизм.

Предположения о том, что современный растительный и животный мир не существовал извечно, но представляет собой нечто исторически возникшее и изменявшееся, бывали еще в древнем мире. Эти догадки принимали форму креационизма, т.е. учения о сотворенности жизни; иногда также форму учения о самозарождении жизни в неживых субстратах (иле, морской воде и т.д.). Постепенно накапливался позитивный материал (селекция, находки остатков вымерших организмов, обнаружения атавизмов), свидетельствовавший об историчности всех проявлений жизни.

С 1796 г. берет начало палеонтология - наука о строении, системе и свойствах ископаемых организмов. Сначала возникла палеонтология позвоночных (работы Ж. Кювье, 1769-1832, который был также основателем сравнительной анатомии), затем и беспозвоночных (1810-е гг. - работы Ж.Б. Ламарка (1744-1829), автора первой целостной эволюционной теории). Успехи биологии дали людям средства для борьбы со многими заболеваниями, в том числе инфекционными, и поставили на научную основу селекцию полезных организмов. Однако развитие наук о жизни тормозилось рядом ошибочных концепций: линнеевской догмой неизменности видов, теорией катастроф Кювье (жизнь на Земле якобы периодически погибла и затем создавалась вновь, в иной форме), учением Ламарка о наследовании приобретенных признаков.

Генетика послужила удачным дополнением дарвиновской теории эволюции. В частности, дискретность наследственных зачатков разъяснила одну из трудностей, с которой столкнулась концепция естественного отбора: при скрещивании вновь возникающие полезные признаки, казалось бы, должны были раствориться в массе старых бесполезных и исчезнуть. На самом деле они сохраняются даже при своей рецессивности и как сказано, в благоприятном случае вновь проявиться. К 60-м годам генетика столь тесно сплелась с теорией эволюции, что это привело к созданию синтетической теории эволюции (СТЭ) - концепции, объединившей генетику и отчасти молекулярную биологию (исследование биологических объектов на молекулярном уровне) с концепцией естественного отбора. Основные позитивные моменты теории Дарвина признаны СТЭ. В самом деле, сторонники СТЭ признают, давая новые толкование, также постулаты - теперь можно сказать, факты - как ненаправленная изменчивость (она объяснена как мутации - внезапные стойкие изменения генов; они как спонтанные встречаются в природе, а искусственно могут быть вызваны радиацией и химическими агентами - “мутагенами”); изоляция, способствующая накоплению изменений (в современном толковании: мутаций); естественный отбор (этот центральный для теории Дарвина пункт остался без изменений, т.е. трактуется как выживание наиболее приспособленных). Вместе с тем СТЭ отвергла как противоречащие реальности некоторые иногда встречаемые у Дарвина, хотя в целом не характерные для него ошибочные тезисы, например, иногда (далеко не всегда) допускаемое им наследование приобретенных признаков. Оно признавалось ранее многими, особенно Ж.Б. Ламарком, который создал на основе этого тезиса одну из наиболее ранних разновидностей эволюционного учения. У нас агрессивный вариант ламаркизма проповедовался в 1930-1960-х гг. “школой" Т.Д. Лысенко. Однако теперь идея наследования приобретенных признаков имеет лишь историческое значение.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.