рефераты скачать

МЕНЮ


Искусственный интеллект

            Традиционные системы искусственного интеллекта основаны на идеологии целеориентированного поведения типа шахматной игры, где цель обоих партнеров состоит в том, чтобы поставить мат другому ценой любых жертв. Не случайно именно шахматные программы оказались столь важными для отработки методов искусственного интеллекта.


Неотъемлемость рефлексии

            Стоит ли считать рефлексию неотъемлемой частью систем искусственного интеллекта? Иначе  говоря - должен ли “мыслящий” аппарат понимать, что он мыслит, и контролировать этот процесс?

            Ответом с технической точки зрения может служить следующее. Как и любая компьютерная программа, наделенная средствами самодиагностики и самоисправления (а такие средства уже становятся стандартном), т. е. средствами повышения надежности, системы искусственного интеллекта должны контролировать происходящие процессы - как внешние, так и внутренние. Однако, может показаться, что в этом смысле будет достаточным просто развитая структура обратных связей. Сразу надо оговориться, что под обратной связью следует понимать только ответную реакцию (или получение информации о ней) после какого-то конкретного действия системы. Обратная связь лишь предоставляет данные, информацию, но ни в коей мере не интерпретирует их. Норбертом Винером в книге “Кибернетика, или управление и связь в животном и машине” были приведены примеры нарушений нервной системы людей и их последствия. Так люди с нарушением системы ориентации собственных конечностей в пространстве (не чувствующие своих рук и ног, случай, когда конечности “немеют”) должны были визуально контролировать свои действия. Это было типичное нарушение обратной связи. Рефлексия же подразумевает анализ полученной картины. Математика - наука абстрактная. Любую предметную область, с которой работает математик, он описывает с помощью моделей, структура и сложность которых зависит от конкретных поставленных задач. Анализ функционирования собственной модели или модели “всей окружающей действительности” (в рамках поставленной задачи), контроль над ее состоянием, прогнозирование состояния - есть ни что иное, как реализация рефлексии. Рефлексия - есть некий метауровень. С применением языков высокого уровня, таких как язык Пролог, позволяющий формулировать цели и строить логические выводы достижимости этих целей, задача реализации рефлексии уже может быть частично решена. С их помощью можно построить некую метаструктуру, надстройку, некий метауровень, позволяющий оценивать поведение предыдущего. Однако, при рассмотрении термина “глубокая рефлексия” или “многоуровневая рефлексия” встает проблема построения моделей самой системой. Здесь на помощь могут приходят абстрактные типы данных. Они позволяют оперировать структурами данных любой конечной сложности. Таким образом можно считать, что системы искусственного интеллекта могут содержать модель рефлексии (математика оперирует только моделями).

            Это может быть ответом на вопрос “Можно ли машину заставить понимать, что она понимает?”, но не на вопрос о обязательном включении рефлексии. Попробуем ответить от противного: а можно ли отвергнуть рефлексию, можно ли считать интеллектуальную систему полноценной без умения оценивать, “понимать” свои действия? Думаю, что нельзя. Более того, рефлексию следует считать одним из главных инструментов построения поведения систем. Как ни забавно это звучит, но говоря самоконтроля и самопонимания, можно говрить о некоторой этике поведения системы.



Математическо-технические

аспекты реализации систем искусственного интеллекта


            С конца 40-х годов ученые все большего  числа  университетских  и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров,  действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума.

            Терпеливо продвигаясь вперед в своем нелегком труде, исследователи,  работающие в области искусственного интеллекта (ИИ),  обнаружили, что вступили в схватку с весьма запутанными проблемами, далеко выходящими за пределы традиционной информатики.  Оказалось, что прежде всего необходимо  понять механизмы процесса обучения,  природу языка и чувственного восприятия.  Выяснилось,  что для создания машин, имитирующих работу человеческого мозга, требуется разобраться в том, как действуют миллиарды его взаимосвязанных нейронов.  И тогда многие  исследователи пришли  к  выводу,  что пожалуй самая трудная проблема,  стоящая перед современной наукой - познание процессов функционирования человеческого разума,  а не просто имитация его работы. Что непосредственно затрагивало фундаментальные теоретические проблемы психологической  науки.  В самом  деле,  ученым  трудно даже прийти к единой точке зрения относительно самого предмета их исследований  -  интеллекта.  Здесь, как в притче о слепцах, пытавшихся описывать слона, пытается придерживаться своего заветного определения.

            Некоторые считают,  что интеллект - умение решать сложные задачи; другие рассматривают его как способность к обучению,  обобщению и аналогиям;  третьи - как возможность взаимодействия с внешним миром путем общения, восприятия и осознания воспринятого. Тем не менее многие исследователи ИИ склонны принять тест машинного интеллекта,  предложенный в начале 50-х годов выдающимся английским математиком и специалистом по вычислительной  технике Аланом Тьюрингом.  Компьютер можно считать разумным,- утверждал Тьюринг,- если он способен  заставить нас поверить, что мы имеем дело не с машиной, а с человеком.

Обеспечение взаимодействия с ЭВМ на естественном языке (ЕЯ) является важнейшей задачей исследований по искусственному интеллекту (ИИ). Базы данных, пакеты прикладных программ и экспертные системы, основанные на ИИ, требуют оснащения их гибким интерфейсом для многочисленных пользователей, не желающих общаться с компьютером на искусственном языке. В то время как многие фундаментальные проблемы в области обработки ЕЯ (Natural Language Processing, NLP) еще не решены, прикладные системы могут оснащаться интерфейсом, понимающем ЕЯ при определенных ограничениях.

Существуют два вида и, следовательно, две концепции обработки естественного языка:

·  для отдельных предложений;

·  для ведения интерактивного диалога.

 

Природа обработки естественного языка

Обработка естественного языка - это формулирование и исследование компьютерно-эффективных механизмов для обеспечения коммуникации с ЭВМ на ЕЯ. Объектами исследований являются:

·  собственно естественные языки;

·  использование ЕЯ как в коммуникации между людьми, так и в коммуникации человека с ЭВМ.

Задача исследований - создание компьютерно-эффективных моделей коммуникации на ЕЯ. Именно такая постановка задачи отличает NLP от задач традиционной лингвистики и других дисциплин, изучающих ЕЯ, и позволяет отнести ее к области ИИ. Проблемой NLP занимаются две дисциплины: лингвистика и когнитивная психология.

Традиционно лингвисты занимались созданием формальных, общих, структурных моделей ЕЯ, и поэтому отдавали предпочтение тем из них, которые позволяли извлекать как можно больше языковых закономерностей и делать обобщения. Практически никакого внимания не уделялось вопросу о пригодности моделей с точки зрения компьютерной эффективности их применения. Таким образом, оказалось, что лингвистические модели, характеризуя собственно язык, не рассматривали механизмы его порождения и распознавания. Хорошим примером тому служит порождающая грамматика Хомского, которая оказалась абсолютно непригодной на практике в качестве основы для компьютерного распознавания ЕЯ.

Задачей же когнитивной психологии является моделирование не структуры языка, а его использования. Специалисты в этой области также не придавали большого значения вопросу о компьютерной эффективности.

Различаются общая и прикладная NLP. Задачей общей NLP является разработка моделей использования языка человеком, являющихся при этом компьютерно-эффективными. Основой для этого является общее понимание текстов, как это подразумевается в работах Чарняка, Шенка, Карбонелла и др. Несомненно, общая NLP требует огромных знаний о реальном мире, и большая часть работ сосредоточена на представлении таких знаний и их применении при распознавании поступающего сообщения на ЕЯ. На сегодняшний день ИИ еще не достиг того уровня развития, когда для решения подобных задач в большом объеме использовались бы знания о реальном мире, и существующие системы можно называть лишь экспериментальными, поскольку они работают с ограниченным количеством тщательно отобранных шаблонов на ЕЯ.

Прикладная NLP занимается обычно не моделированием, а непосредственно возможностью коммуникации человека с ЭВМ на ЕЯ. В этом случае не так важно, как введенная фраза будет понята с точки зрения знаний о реальном мире, а важно извлечение информации о том, чем и как ЭВМ может быть полезной пользователю (примером может служить интерфейс экспертных систем). Кроме понимания ЕЯ, в таких системах важно также и распознавание ошибок и их коррекция.


Основная проблема обработки естественного языка

Основной проблемой NLP является языковая неоднозначность. Существуют разные виды неоднозначности:

·  Синтаксическая (структурная) неоднозначность: во фразе Time flies like an arrow для ЭВМ неясно, идет ли речь о времени, которое летит, или о насекомых, т.е. является ли слово flies глаголом или существительным.

·  Смысловая неоднозначность: во фразе The man went to the bank to get some money and jumped in слово bank может означать как банк, так и берег.

·  Падежная неоднозначность: предлог in в предложениях He ran the mile in four minutes/He ran the mile in the Olympics обозначает либо время, либо место, т.е. представлены совершенно различные отношения.

·  Референциальная неоднозначность: для системы, не обладающей знаниями о реальном мире, будет затруднительно определить, с каким словом - table или cake - соотносится местоимение it во фразе I took the cake from the table and ate it.

·  Литерация (Literalness): в диалоге Can you open the door? — I feel cold ни просьба, ни ответ выражены нестандартным способом. В других обстоятельствах на вопрос может быть получен прямой ответ yes/no, но в данном случае в вопросе имплицитно выражена просьба открыть дверь.

Центральная проблема как для общей, так и для прикладной NLP - разрешение такого рода неоднозначностей - решается с помощью перевода внешнего представления на ЕЯ в некую внутреннюю структуру. Для общей NLP такое превращение требует набора знаний о реальном мире. Так, для анализа фразы Jack took the bread from the supermarket shelf, paid for it, and left и для корректного ответа на такие вопросы, как What did Jack pay for?, What did Jack leave? и Did Jack have the bread with him when he left? необходимы знания о супермаркетах, процессах покупки и продажи и некоторые другие.

Прикладные системы NLP имеют преимущество перед общими, т.к. работают в узких предметных областях. К примеру, системе, используемой продавцами в магазинах по продаже компьютеров, не нужно ”раздумывать” над неоднозначностью слова terminals в âîïðîñå How many terminals are there in the order?.

Тем не менее, создание систем, имеющих возможность общения на ЕЯ в широких областях, возможно, хотя пока результаты далеки от удовлетворительных.


Распознавание речи

            По мере развития компьютерных систем становится все более очевидным, что использование этих систем намного расширится, если станет возможным использование человеческой речи при работе непосредственно с компьютером, и в частности станет возможным управление машиной обычным голосом в реальном времени, а также ввод и вывод информации в виде обычной человеческой речи.

Существующие технологии распознавания речи не имеют пока достаточных возможностей для их широкого использования, но на данном этапе исследований проводится интенсивный поиск возможностей употребления коротких многозначных слов (процедур) для облегчения понимания. Распознавание речи в настоящее время нашло реальное применение в жизни, пожалуй, только в тех случаях, когда используемый словарь сокращен до 10 знаков, например при обработке номеров кредитных карт и прочих кодов доступа в базирующихся на компьютерах системах, обрабатывающих передаваемые по телефону данные. Так что насущная задача - распознавание по крайней мере 20 тысяч слов естественного языка - остается пока недостижимой. Эти возможности пока недоступны для широкого коммерческого использования. Однако ряд компаний своими силами пытается использовать уже существующие в данной области науки знания.

            Для успешного распознавания речи следует решить следующие задачи:

1)   обработку словаря (фонемный состав),

2)   обработку синтаксиса,

3)   сокращение речи (включая возможное использование жестких сценариев),

4)   выбор диктора (включая возраст, пол, родной язык и диалект), тренировку дикторов,

5)   выбор особенного вида микрофона (принимая во внимание направленность и местоположение микрофона),

6)   условия работы системы и получения результата с указанием ошибок.

            Существующие сегодня системы распознавания речи основываются на сборе всей доступной (порой даже избыточной) информации, необходимой для распознавания слов. Исследователи считают, что таким образом задача распознавания образца речи, основанная на качестве сигнала, подверженного изменениям, будет достаточной для распознавани, но тем не менее в настоящее время даже при распознавании небольших сообщений нормальной речи, пока невозможно после получения разнообразных реальных сигналов осуществить прямую трансформацию в лингвистические символы, что является желаемым результатом.



Практическая реализация


            Разработки в области искусственного интеллекта ведутся и в Новосибирском Государственном Техническом Университете. На факультете Прикладной Математики и Информатики (ФПМиИ) элементы теории искусственного интеллекта входят в базовую программу подготовки специалистов. Одним из ведущих специалистов в данной области является профессор Хабаров В.И., зав. кафедрой Программных Систем и Баз Данных (ПСиБД). Одно из направлений его исследований связано с внедрением семантических и нейронных сетей в системы управления и анализа данных, систем накопления и представления знаний. В качестве примера можно назвать разработку CASE-технологии, базированной на ультрасетях.

            Тенденции развития современных информационных технологий приводят к постоянному возрастанию сложности информационных систем (ИС), создаваемых в различных областях экономики. Современные крупные проекты ИС характеризуются, как правило, следующими особенностями:

·      сложность описания (достаточно большое количество функций, процессов, элементов данных и сложные взаимосвязи между ними), требующая тщательного моделирования и анализа данных и процессов;

·      наличие совокупности тесно взаимодействующих компонентов (подсистем), имеющих свои локальные задачи и цели функционирования (например, традиционных приложений, связанных с обработкой транзакций и решением регламентных задач, и приложений аналитической обработки (поддержки принятия решений), использующих нерегламентированные запросы к данным большого объема);

·      отсутствие прямых аналогов, ограничивающее возможность использования каких-либо типовых проектных решений и прикладных систем;

·      необходимость интеграции существующих и вновь разрабатываемых приложений;

·      функционирование в неоднородной среде на нескольких аппаратных платформах;

·      разобщенность и разнородность отдельных групп разработчиков по уровню квалификации и сложившимся традициям использования тех или иных инструментальных средств;

·      существенная временная протяженность проекта, обусловленная, с одной стороны, ограниченными возможностями коллектива разработчиков, и, с другой стороны, масштабами организации-заказчика и различной степенью готовности отдельных ее подразделений к внедрению ИС.


            Несмотря на высокие потенциальные возможности CASE-технологии (увеличение производительности труда, улучшение качества программных продуктов, поддержка унифицированного и согласованного стиля работы) далеко не все разработчики информационных систем, использующие CASE-средства, достигают подобных результатов. Применение семантических сетей для проектирования данного вида систем является по своей сути шагом в абсолютно новом направлении, что позволяет проектировать и внедрять интеллектуальные обучаемые системы для поддержки принятия решений.

Семантические сети

            Семантическая сеть - структура для представления знаний в виде узлов, соединенных дугами. Самые первые семантические сети были разработаны в качестве языка-посредника для систем машинного перевода, а многие современные версии до сих пор сходны по своим характеристикам с естественным языком. Однако последние версии семантических сетей стали более мощными и гибкими и составляют конкуренцию фреймовым системам, логическому программированию и другим языкам представления.

Начиная с конца 50-ых годов были создано и применены  на практике десятки вариантов семантических сетей. Несмотря на то, что терминология и их структура различаются, существуют сходства, присущие практически всем семантическим сетям:

1)   узлы семантических сетей представляют собой концепты предметов, событий, состояний;

2)   различные узлы одного концепта относятся к различным значениям, если они не помечено, что они относятся к одному концепту;

3)   дуги семантических сетей создают отношения между узлами-концептами (пометки над дугами указывают на тип отношения);

4)   некоторые отношения между концептами представляют собой лингвистические падежи, такие как агент, объект, реципиент и инструмент (другие означают временные, пространственные, логические отношения и отношения между отдельными предложениями;

5)   концепты организованы по уровням в соответствии со степенью обобщенности так как, например,  сущность, живое существо, животное, плотоядное.

            Однако существуют и различия: понятие значения с точки зрения философии; методы  представления кванторов общности и существования и логических операторов; способы манипулирования сетями и правила вывода, терминология. Все это варьируется от автора к автору. Несмотря не некоторые различия, сети удобны для чтения и обработки компьютером, а также достаточно мощны, чтобы представить семантику естественного языка.



Искусственный интеллект

и теоретические проблемы психологии


            Можно выделить две основные линии работ по ИИ. Первая связана с совершенствованием самих машин, с повышением "интеллектуальности" искусственных систем. Вторая  связана с задачей оптимизации совместной работы "искусственного интеллекта" и собственно интеллектуальных возможностей человека.

            Переходя к психологическим проблемам искусственного интеллекта, можно отметить три позиции по вопросу о взаимодействии психологии и искусственного интеллекта. 

1.    "Мы мало знаем о человеческом разуме, мы хотим его воссоздать, мы делаем это вопреки отсутствию знаний" - эта позиция характерна для многих зарубежных специалистов по ИИ.

2.    Вторая позиция сводится к констатации ограниченности результатов исследований интеллектуальной деятельности, проводившихся психологами, социологами и физиологами. В качестве причины указывается отсутствие адекватных методов. Решение видится в воссоздании тех или иных интеллектуальных функций в работе машин. Иными словами, если машина решает задачу ранее решавшуюся человеком,  то знания,  которые можно подчерпнуть, анализируя эту работу и есть основной материал для построения психологических теорий.

3.    Третья позиция характеризуется оценкой исследования в области искусственного  интеллекта и психологии как совершенно независимых. В этом случае допускается возможность только потребления, использования психологических  знаний  в плане психологического обеспечения работ по ИИ.

            Популярные идеи системного анализа позволили сделать сравнение принципов работы искусственных систем и собственно человеческой деятельности важным эвристическим приемом выделения именно специфического психологического анализа деятельности человека.

            В 1963 г. выступая на совещании по философским вопросам физиологии ВНД и психологии, А.Н. Леонтьев сформулировал следующую позицию: машина воспроизводит операции человеческого мышления, и следовательно соотношение "машинного" и "немашинного" есть соотнесение операционального и неоперационального в человеческой деятельности. Однако в последствии при сравнении операций, из которых слагается работа машины, и операций как единиц деятельности человека выявились существенные различия - в психологическом смысле "операция" отражает способ достижения результатов, процессуальную характеристику, в то время как применительно к машинной работе этот термин используется в логико-математическом смысле (характеризуется результатом).

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.