рефераты скачать

МЕНЮ


"Искусственный интелект" и проблема субъективного в философии

Некоторые задачи, такие как распознавание образов и использование естественных языков не удавалось реализовать длительное время, лишь в последние годы в этой области наметился некоторый прогресс. На задаче распознания зрительных образов следует остановиться особо. Человек узнает человека, которого видел один-два раза, непосредственно в процессе чувственного восприятия. Исходя из этого, кажется, что задача не является интеллектуальной. Но в процессе узнавания человек не решает мыслительных задач лишь постольку, поскольку программа распознания не находится в сфере осознанного. Традиционный подход показал полную несостоятельность в плане восприятия естественного языка даже для эвристически запрограммированных систем. Попытки свести понимание языка к конечному набору каких-то правил выявили, что он не поддается окончательной формализации. Правила, которые выводились из других правил, в свою очередь нуждались в интерпретации. Вскрылась проблема “изначального понимания” человеком неявных инструкций, которые не могут быть четко сформулированы. Принципиальная корректность работы компьютера означает невозможность порождения ошибочных гипотез, а указание на локальный характер работы ЭВМ - отсутствие как такового механизма выдвижения гипотез, поскольку для выдвижения гипотез необходима другая, отличная от алгоритмического вычислителя, программа, способная "помнить" результаты своих прошлых вычислений и анализировать их. По существу, речь в данном случае идет уже о программе следующего иерархического уровня (метапрограмме), которая работает не непосредственно с "входными данными", а с результатами работы программы первого уровня - с результатами работы алгоритмического вычислителя.

Это заставило ученых обратиться к еще одному аспекту человеческого мышления: умению человека учитывать нечеткие ситуации, не прибегая к замене их точными описаниями. Человек способен использовать глобальный контекст для требуемого уменьшения неоднозначности, не прибегая при этом к формализации (то есть полному исключению неопределенности). Это особенно ярко проявляется при манипулировании естественным языком. Присущее человеку ощущение ситуации позволяет ему исключить из рассмотрения большинство возможных вариантов до всякого точного их анализа. По аналогии с человеком в цифровые вычислительные устройства попытались ввести принцип случайности. Такой подход оказался наиболее продуктивным при решении игровых задач, например шахматных. Также интересной в этом плане представляется используемая во фреймах операция по умолчанию. Она включается, если не хватает конкретной информации для использования данного фрейма. Тогда вводится предположение, что недостающая информация – обычная, т.е. не отличается от нормы. Такой прием позволяет снять неопределенность – понять смысл ситуации при неполноте информации. Вывод по умолчанию выполняет весьма важную функцию при распознавании. Например, если видна лишь часть образа, то, заменив другие части значениями по умолчанию, можно хотя бы приблизительно идентифицировать образ. Точно также, используя значения по умолчанию, можно восстановить смысл контекста, из которого выхвачены отдельные предложения. Отчетливо видно, что те механизмы мышления, которые мыслители прошлого, считали  лишь помехой на пути постижения истины, являются  не менее важным способом получения информации о действительности, хотя законы такого способа не столь очевидны по сравнению с правилами формальной логики.

На данной стадии возникает необходимость прояснить взаимоотношения, существующие между “искусственным интеллектом” и биологической наукой о мышлении. Один из аспектов проблемы – это моделирование процессов мышления. В исследованиях по “искусственному интеллекту” ученые, сталкиваясь с затруднениями, неизбежно обращали взоры на процессы мыслительной деятельности, имеющие место у человека. Вот что пишет по этому поводу Станислав Мурсалов программист, известный разработчик систем с элементами “искусственного интеллекта”:Многочисленные аналогии с психикой человека будут продолжаться, …аналогия в данном случае – важный инструмент разработки. Фундаментальная теория всегда опирается на подходящую модель явления, а здесь самая подходящая модель – наша психика, сотворив которую, природа давно решила нашу задачу. Уже многократно в трудах своих, придя к тем или иным выводам, впоследствии я обнаруживал объяснение этому в "психической" книжке или беседуя с умным человеком. … если совершенно разные пути приводят к аналогичным выводам, значит предмет– рационален, работать с ним можно…”

Общим для мозга и моделирующими его работу устройствами является материальность, закономерный характер всех процессов, общность некоторых форм движения материи и отражение как всеобщее свойство материи.

Когда мы говорим о модели, речь идет о системе, в определенных существенных структурах и отношениях аналогичной предмету исследования, системе, применение которой при исследовании определенных предметных областей опирается на научную обоснованность выводов по аналогии. Аналогия предполагает тождественность некоторых характеристик сравниваемых систем, но в целом эти системы всегда различны.

Модель при этом выступает как заместитель прототипа, причем это не простое замещение, а такое, которое дает возможность получить о прототипе определенное знание. Следовательно, для всех научных моделей характерно то, что они являются заместителями объекта исследования, находящимися с последним в таком сходстве (или соответствии), которое позволяет получить новое знание об этом объекте. Весьма распространенным является отождествление модели с идеальным образом. С этой точкой зрения трудно согласиться, ведь нетождественность модели и образа определяется самой природой моделирования – последнее предполагает формирование образа в процессе предварительного исследования объекта (прототипа).

В моделировании объекта мы можем выделить разные этапы, для которых характерно использование моделей, отражающих степень полноты аналогии между моделью и прототипом: моделирование результата; моделирование поведения, ведущего к этому результату; моделирование структуры; моделирование материала. Этот способ разделения моделей оказывается удобным для анализа моделирования отражательных функций мозга. Например, такой вид аналогии как изоморфизм предполагает тождество структур и различие элементов, но соответствие структур разных объектов не предполагает обязательность тождества элементов, связанных определенными соотношениями. Такова же ситуация и при других видах аналогии.

Возникновение системного подхода было обусловлено тем, что традиционные методы исследования при изучении сложных объектов оказались несостоятельными. Поэтому и появилось необходимость представления сложного объекта в виде системы. С использованием системного подхода возникает вопрос: существуют ли системы реально или же системы привносятся в реальность человеком? Имеется тенденция, берущая начало с Клода Бернара, согласно которой системы существуют не в природе, а в сознании людей. С. Бир, исходя из разрабатываемой им идеи имманентности организации, утверждает, что наш мозг накладывает некоторую структуру на реальное бытие, выделяя тем самым систему. Конечно, можно согласиться с тем, что прерогатива выделения системы принадлежит субъекту, но это не означает, что система – произвольная конструкция сознания, т.к. если есть отражение в сознании, то есть и то, что отображается, т.е. объективная действительность. Несмотря на объективность существования системы, ее выражение,

представление носит условный характер, определяемый уровнем развития нашего знания. И в этом смысле мы можем сказать, что система в виде некоторого теоретического представления объекта не существует вне человеческого познания  и общественной практики, хотя сам объект с его взаимосвязью составляющих существует объективно. Таким образом, можно говорить, что существую реальные объективные системы (объекты) и системы понятий (мысленные, концептуальные системы),  которые характеризуют этот объект. Следовательно, в виде систем могут быть представлены не только объекты, но и теории.

Мозг и кибернетические моделирующие устройства принадлежат к самоорганизующимся динамическим функциональным системам. Для правильного функционирования системы в ней необходимо постоянство определенных параметров. Регулирование осуществляется по замкнутому циклу, при котором посредством обратной связи система получает сигнал о степени полезности действия. Между мозгом и моделирующим устройством существует структурно-функциональная аналогия, заключающаяся в том, что определенной структуре соответствует определенная функция.

Субстанциональные теории психического стали терять популярность по мере того, как дальнейшее развитие наук, таких как физика, математика и, в особенности, кибернетика, показало, что функции, как правило, не столь тесно связаны с субстратом в котором или посредством которого они реализуются. Одна и та же функция (описываемая, например, одними и теми же математическими формулами) может быть реализована различными способами и в различных по своим физическим свойствам субстратах. Выяснилось, что функция больше зависит не от специфических свойств материального субстрата, а от его структурной организации. Выяснилось также, что сложные функции можно представить в виде суперпозиции некоторого фиксированного множества простых функций. В математике подобный подход получил развитие в теории алгоритмов (теории рекурсивных функций).

Однако, при моделировании мышления в технической модели воссоздается не мыслительный процесс, а лишь его результат. Совершенно прав, по моему мнению, В.А. Веников, утверждающий, что при моделировании живых систем между моделью и прототипом проявляется сходство по отдельным функциям и несходство по существу.

Несмотря на это стала выдвигаться,  по словам Б.М. Кедрова, “идея о сведении мозга к чисто физической системе, о мнимой замене мозга машиной”. Так возникла проблема, получившая первоначальную формулировку “может ли машина мыслить?”. И нередко признание возможности наделения моделирующих устройств сознанием стало ассоциироваться с материализмом, а отрицание такой возможности- с идеализмом. Столь категоричная постановка вопроса неправомерна: между живыми системами и моделирующими устройствами есть и общность, которую невозможно отрицать, и специфика, которой нельзя пренебречь. А для проведения сравнительного анализа этих двух объектов необходимо в первую очередь конкретизировать терминологию описания.

Те сведения о мозге, которые нам дает нейрофизиология и нейроанатомия, по большей части укладываются в схему, согласно которой мозг есть некая разновидность "сетевого нейрокомпьютера", т.е. представляет собой нечто подобное сети взаимосвязанных элементарных вычислительных устройств, параллельно обрабатывающих большие массивы сенсорной информации. Нервная клетка (нейрон) рассматривается с этой точки зрения как основной рабочий элемент "нейрокомпьютера", а его функция сводится к простой суммации входных сигналов (нервных импульсов, поступающих от других нейронов) с различными "весовыми коэффициентами". Если сумма превышает определенный порог, то нейрон генерирует "потенциал действия" - стандартный импульс, который может быть адресован десяткам тысяч других нейронов. Функция долгосрочной памяти в этой модели обеспечивается устойчивыми изменениями проводимости межнейронных контактов - синапсов (так называемая "коннекторная" теория долгосрочной памяти). Еще в 40-х годах было показано ( У.С. Маккаллок, У.Питс), что сеть, построенная из элементов, аналогичных по своим функциональным свойствам нейронам, способна, при условии наличия достаточно большого числа нейроподобных элементов, выполнять функцию универсальной вычислительной машины, т.е. в соответствии с тезисом Черча, вычислять все, что вычислимо.

Схематизм такого подхода очевиден. Заметим, что нейрон - это по компьютерным меркам чрезвычайно медлительный, ненадежный, обладающий огромной латентностью и рефрактерностью функциональный элемент. (Достаточно сказать, что время переключения на одном нейроне составляет величину порядка одной сотой секунды, максимальная частота импульсации не превышает нескольких сотен герц ). По всем этим параметрам нейрон не выдерживает никакой конкуренции с транзистором или микросхемой. Кроме того, скорость передачи нервных импульсов внутри мозга примерно в три миллиона раз меньше, чем скорость передачи электромагнитных сигналов между элементами компьютера. Каким образом агрегат, состоящий из столь несовершенных элементов, может не просто конкурировать с электронным компьютером, но и существенно его превосходить при решении определенного рода задач (распознавание образов, перевод с одного языка на другой и т.п.)? Обычный ответ - за счет использования принципа параллельной обработки информации. Однако, интенсивные исследования в этой области за последние десятилетия показали, что распараллеливание в общем случае дает лишь сравнительно небольшой выигрыш в скорости вычислений (не более, чем на два-три порядка). Причем этот факт мало зависит от архитектуры вычислительных систем. Кроме того, далеко не все задачи допускают распараллеливание вычислений. Далее, вычислительную мощность мозга в целом можно приблизительно оценить числом событий, которые могут происходить в нем за одну секунду (здесь имеются в виду лишь информационно значимые события, например генерация потенциала действия нейроном). Общее число таких значимых событий оценивается величиной порядка сотен миллиардов, что вполне сравнимо с числом операций в секунду в большой параллельной компьютерной системе. То есть и с этой точки зрения мозг ничем не превосходит компьютер. Остается предположить, что мозг, наряду с известными нам из физиологии электрохимическими процессами, использует для обработки информации и какие-то иные физические принципы, которые и позволяют ему достичь большей по сравнению с компьютером "вычислительной эффективности".



Перейдем теперь к анализу проблемы моделирования отражательных функций мозга. В процессе развития и усложнения форм движения материи появляются и соответствующие им формы отражения. Поэтому в результате развития может возникнуть живая, ощущающая материя, обладающая аналогичными человеку свойствами. Л. фон Берталанфи подчеркнул отличие живого организма от машины, заключающееся в том, что живой организм развивается в направлении увеличения дифференциации и негомогенности и может корректировать “шум” в более высокой степени, чем это имеет место в коммуникационных каналах неживых систем – оба эти свойства организма являются результатом того, что организм представляет собой открытуюсистему. Человеку и устройству свойственны различные формы движения материи, а потому и формы отражения у них качественно различны. Техническим моделям присущи низшие формы движения материи, а человеческому организму – также биологическая и социальная.

Некоторые авторы утверждают, что хотя современные моделирующие устройства и не обладают чертами сознания, из этого положения нельзя сделать вывод о невозможности существования неорганической материи, обладающей свойствами мышления. При этом высказывается мнение, что такое свойство может появиться в ходе усложнения организации моделирующего устройства, т.е. на базе количественных изменений произойдут качественные изменения.

Между структурой и субстратом мозга мыслящего субъекта и функцией сознания, мышления существует органическая связь. В моделирующих устройствах вид связи функции со структурой и субстратом принципиально иной чем у человека, здесь материальный субстрат уже не играет главной роли и все внимание направлено на структуру, способу организации логических сетей. Такая ситуация сохраняется по сей день, хотя ограниченность такого подхода становится все более очевидной. Является ли столь пренебрежительное отношение к субстратным особенностям обоснованным? Конечно первоначальное значение понятия субстратный подхода, исходящее из того, что для каждого свойства необходим соответствующий субстрат, существующий независимо от остального мира, изжило себя, поскольку свойства, как оказалось, не имеют субстанционального характера, они являются результатом взаимодействия объектов. Один и тот же субстрат в разных условиях обнаруживает разные свойства. В единой системе “субстрат-структура-свойство” от одного из элементов можно отвлечься лишь в строго определенных пределах. Какого бы высокого уровня не достигли функциональные исследования, рано или поздно возникает необходимость проникновения на следующий уровень вплоть до субстрата. Познание лишь структуры не может обеспечить раскрытия специфики живых систем, т.к. познание с точностью до изоморфизма не может быть исчерпывающим, в противном случае любой объект может быть разложен без остатка “на совокупность структур из чистых отношений”. Кибернетический подход рассматривает структуры и функции в той мере, в какой они являются общими у разных форм движения материи, поэтому для него характерно отвлечение от конкретных материальных процессов. В рамках наук изучающих специфику живого, отвлечение от конкретной формы движения материи невозможно. При анализе познавательного процесса гносеология абстрагируется от психофизиологических механизмов, посредством которых реализуется этот процесс. Но из этого не следует, что для построения систем искусственного интеллекта эти механизмы не имеют значения. Вообще говоря, не исключено, что механизмы, необходимые для воплощения неотъемлемых характеристик интеллектуальной системы, не могут быть реализованы в цифровых машинах или даже в любой технической системе, включающей в себя только компоненты неорганической природы. Иначе говоря, в принципе не исключено, что хотя мы можем познать все гносеологические закономерности, обеспечивающие выполнение человеком его познавательной функции, но их совокупность реализуема лишь в системе, субстратно тождественнойчеловеку.



Познание объективной действительности человеком осуществляется посредством языка, с помощью которого происходит выявление и закрепление результатов процессса познания. Язык человека носит понятийный характер. Образ вещи или явления предстает свободным от вещественного, материального облика, от второстепенных несущественных признаков. Понятие, поэтому, выступает как форма абстрактно-логического мышления, возникшая в практической деятельности и непосредственно связанная с языком.

При сравнении языка человека и машин следует помнить, что идеальность психической формы отражения заключается в предметной соотнесенности, а это означает, что в нейродинамических состояниях отражательного апарата выделяются структуры, изоморфные структурам в предметной сфере – получающийся идеальный образ не что иное, как результат использования упорядоченности нейродинамических процессов мозга в функции особых заместителей вещей и регуляторов действий с вещами.

Человек, осмысливая знаки постигает их значение. Но для самой машины всякий символ играет роль физического сигнала, на который она отвечает другим сигналом. Машина действует не с понятийным языком, а с системой правил, по своему характеру являющейся формальной, не имеющей предметного содержания. Поэтому речь может идти не об образовании понятий моделирующими устройствами, а о физическом аналоге процесса образования понятий. Моделирование процесса образования понятий должно рассматриваться не как образование подлинных понятий, а как образование символов для обозначения определенных классов явлений. Машина, таким образом, имеет дело не со значением знака, а лишь с его материальной формой. Знак и объект, обозначаемый знаком, связаны не непосредственно, а при помощи абстрактно-логического мышления. Связь знака и обозначаемого предмета опосредуется значением.

Для того чтобы знак стал носителем информации, необходима операция соотнесения, а соотносить знак и объект, обозначаемый этим знаком, может лишь человек. В моделирующих же устройствах имеет место перекодирование информации, т.е. преобразование формализма, но отнюдь не его смыслового содержания.  Информацию, заключенную в образе, можно передавать посредством соответствующего кода, но сам образ по каналам связи не передается. Современные системы искусственного интеллекта почти не имитируют сложную структуру образа, что не позволяет им перестраивать проблемные ситуации, комбинировать локальные части сетей знаний в блоки, перестраивать эти блоки и т. д.

Использование знаков и знаковых систем в процессе познания увеличивает возможности познания. Связи между знаками выступают в более упрощенном виде, чем между реальными объектами. Кроме того, выражение понятий посредством знаков позволяет значительно быстрее оперировать, что и осуществляется на моделирующих устройствах. Однако в настоящее время не в полной мере реализованы даже принципы формального соответствия естественной и машинной переработки информации.  

Воплощение в информационные массивы и программы систем “искусственного интеллекта” аналогов категорий находится пока в начальной стадии. Аналоги некоторых категорий (например, “целое”, “часть”, “общее”, “единичное”) используются в ряде систем представления знаний, в частности в качестве “базовых отношений”, в той мере, в какой это необходимо для тех или иных конкретных предметных или проблемных областей, с которыми взаимодействуют экспертные системы.

         В формализованном понятийном аппарате некоторых систем представления знаний предприняты отдельные попытки выражения некоторых моментов содержания и других категорий (например, “причина”, “следствие”). Однако ряд категорий (например, “сущность”, “явление”) в языках систем представления знаний отсутствует. Предстоит большая работа философов, логиков и кибернетиков по внедрению аналогов категорий в системы представления знаний и другие компоненты интеллектуальных систем. Это одно из перспективных направлений в развитии теории и практики кибернетики.

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.